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Abstract. In this study, results of a variety of ML algorithms are tested against
artificially polluted datasets with noise. Two noise models are tested, each of
these studied on a range of noise levels from 0 to 50algorithm, a linear regres-
sion algorithm, a decision tree, a M5 algorithm, a decision table classifier, a
voting interval scheme as well as a hyper pipes classifier. The study is based
on an environmental field of application employing data from two air quality
prediction problems, a toxicity classification problem and four artificially pro-
duced datasets. The results contain evaluation of classification criteria for every
algorithm and noise level for the noise sensitivity study. The results suggest
that the best algorithms per problem in terms of showing the lower RMS error
are the decision table and the linear regression, for classification and regression
problems respectively.

1 Introduction

Noise is a random error of variance of a measured variable [1]. Real datasets coming
from monitoring of environmental problems usually contain noisy data, mainly due to
malfunctions, unfortunate calibrations of measurement equipment or network problems
during the transport of sensor information to a central measurement collection unit.
Types of noise are present to almost any real world problem, but not always known.

Predictive algorithms have used synthetic datasets during their development stage.
In order to cope with real world problems where the presence of noise in data is a
common fact, the algorithms require the existence of a pre-processing module that
would deter the impact of noise in data before they are processed. The way this module
would calculate the data may significantly affect the performance of the constructed
model.

In this study many machine learning algorithms from the machine learning platform
Weka [2] are examined in the presence of increasing levels of artificial noise. The gradi-
ent impact of noise renders the initial problem from a deterministic one to a stochastic
one. The aim of this study is to find machine learning algorithms that would exhibit a
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good fit to the noise inflicted datasets as well as a smooth degradation as the noise level
is increased. The results would be useful for any similar problem facing noise impurities
in its data. The algorithms engaged in our study are summed in table 1.

Three sources of data were exploited in this study; two problems of short-hand
prediction of daily maximum pollutant concentration, one problem of classification of
the toxicity level of various chemical substances, and four artificial datasets were the
basis of the research conducted in this paper.

Algorithm Weka Scheme Type∗ Description

Zero Rule ZeroR R/C A very naive algorithm that classifies all
cases to the majority class. Used for refer-
ence reasons.

K-nn IB-k∗∗ R/C The well known Instance-Based algorithm
k-nearest neighbors, implemented in accor-
dance to Aha and Kibler [3]

Linear Regression LinearRegression R The linear regression algorithm

M5 M5Prime R An algorithm exploiting decision trees with
regression on the cases at each leaf

K Star KStar R An Instance-based learner using an en-
tropic distance measure [4]

MLP Neural Network R/C∗∗∗ An implementation of the classical MLP
neural network trained by the feed-forward
back propagation algorithm

Decision Table C A scheme that produces rules formatted as
a table, from selected attributes (following
a wrapper-type feature selection prior to
the training phase)

Hyper Pipes HyperPipes C For each class a HyperPipe is constructed
that contains all points of that class. Test
instances are classified according to the
class that most contains the instance.

C4.5 decision tree J48 C An implementation of the C4.5 decision
tree [7]

C4.5 Rules J48.PART C A scheme for building rules from partial
decision trees

Voting Feature Interval VFI C A simple scheme that calculates the occur-
rences of feature intervals per class, and
classifies by voting on new cases [6]

Table 1. A summary of the machine learning algorithms evaluated in the noise sensitivity
study.

∗: R for Regression type, C for Classification type of problems.
∗∗ : for this study 9 neighbors were chosen for the k parameter after preliminary

study with another sample of data not used in the final experiments.



∗∗∗: an MLP with fixed parameters was used, having 20 hidden neurons, sigmoid
activation function on each neuron, 500 epochs of training with a learning rate of 0.2
and a momentum of 0.2.

2 Past experience on noise sensitivity of machine learning
algorithms

At the past a small number of noise studies have been reported, as for the sensitivity of
machine learning algorithms against this problem. Noise models have been examined on
different variants of the TD reinforcement learning algorithm at 1994 [11], as well as on
induction learning programs by Chevaeyre and Zucker [5]. Following the tracks of the
pioneering idea of Kearns [9] about statistical query models, Teytaud [12] theoretically
explains the relation between some noise models and regression algorithms.

Li et al. [10] presented a study about four machine learning algorithms, i.e. a C4.5
type of decision tree, a naive bayes classifier, a decision rules classifier and the OneR
method of one rule, on a noise model. They consequently compared the results of the
algorithms before and after the wavelet denoising technique, for small levels of noise,
finding that the technique applied boosted the efficiency of the algorithms in almost
all of the noise levels.

3 Emulating noise: The Noise Model Examined

In the following study, a noise model is applied on the datasets at hand, introducing a
white noise type of deformation on the original data. Two assumptions are considered
to be true for all datasets:

1. The variables of the dataset (both the independent and the dependent variables)
are normally distributed

2. Noise is randomly distributed and independent from the data.

Then for every case (yi, xi) in the dataset L: The pair (yi, xi) of the dependent variable
Y and the matrix of independent variables X is substituted by another (y

′
i , x

′
i) by a

probability of n, where n is the noise level. The new pair is calculated by the following
formula:

x
′
ij =

{
xij + σxjzj pij >= n,

xij pij < n.
y

′
i =

{
yi + σyzj pij >= n,

yi pij < n.
(1)

zij = norminv(pij), j ∈ [1, .., k]
σxj is the standard deviation of xj, zj is a normally distributed random variable and

is calculated by the inverse function of density-probability of the normal distribution
for a value of pij, having a mean value of zero and a standard deviation equal to unity,
pij ∈ (0, 1) is a probability variable produced by a random value generator following a
uniform distribution.



4 Experiments and discussion

Our experiments are based on two air quality problems, a toxicity classification prob-
lem and four artificial datasets. The dependent variables for the first two problems
correspond to the maximum daily concentration of nitrogen dioxide and of ozone, two
harmful aerial pollutants, after 10 o’ clock in the morning. The datasets under study
contain five and eight main input attributes respectively that were selected after a
feature-selection procedure using a genetic algorithm [8]. The toxicity problem refers
to the estimation of the toxicity index of several chemical substances, containing 20
features and 1 dependent variable. Finally, 4 artificial problems have been included in
the study as described in [13], consisted of four features and one output variable. Of
the four latter datasets, one implements a multivariate problem, another one a linear
function, while the third and the fourth ones refer to a non-linear function. Table 2
summarizes this information per problem studied.

Problem Code Description Dependent Variable

A1 Artificial problem Numerical/ Multivariate

A2 Artificial problem Numerical/ Linear

A3 Artificial problem Numerical/ Non linear of the form
x2

A4 Artificial problem Numerical/ Non linear of the form
x2

NO2 Daily Maximum Concentration Forecasting from
sensory data

Numerical/ Non linear

O3 Daily Maximum Concentration Forecasting from
sensory data

Numerical/ Non linear

TOX Classification of an index of toxicity for various
substances from chemical descriptors

Numerical

Table 2. A description of the problems of the noise-sensitivity study.

The artificial problems A1-A4 are of the type y = f(x1, x2, x3, x4) and have been
created using the formulas of table 3:

Problem x1= x2= x3= x4= y=

A1 z x1 ∗ 0.8 + z ∗ 0.6 x1 ∗ 0.6 + z ∗ 0.8 z (x1 − x2 − x3 + x4)/1.47

A2 z (x2
1 + z ∗ 0.5)/1.5 x1 ∗ 0.6 + z ∗ 0.8 z (x1 − x2 − x3 + x4)/1.7

A3 z x1 ∗ 0.8 + z ∗ 0.6 x1 ∗ 0.6 + z ∗ 0.8 z (x1 − x2
2 − x3 + x4)/1.96

A4 z x1 ∗ 0.8 + z ∗ 0.6 x1 ∗ 0.6 + z ∗ 0.8 z (x1 − x2 − x3 + x2
4)/1.76

Table 3. Definition of the variables for the four artificial problems A1-A4.



All cases containing missing values have been deleted. Although the resulting datasets
may already contain an amount of noise, for this study it should be considered as clean
data and this fact does not influence the experiments as the noise models studied refer
to additive noise.

Artificial noise was generated at random throughout the whole datasets. The reason
of ”polluting” both the training set and the evaluation set is that as noise in the data
has been emerged so far, it will be emerged in the future with the same probability
and the same patterns.

Repetitive experiments have been done on each of the polluted datasets. Eight
noise levels have been tested, ranging from 0 to 500.20, 0.30, 0.40, 0.50}. Five different
datasets were produced for every such noise level, while the results of the competing
machine learning schemes were averaged over these five datasets. Five-fold cross val-
idation experiments were carried out for each of these datasets. For each run, eleven
machine learning algorithms were trained and tested following the five-cross-validation
scheme. These are summed in table 1 along with a short description for each one of
them. Half of them are suitable for regression type of problems, while the other half is
classification algorithms. Since all the problems were regression problems, the numeri-
cal dependent variable for each of the problems was transformed into a categorical one
by dividing the initial range into 5 equally wide areas. Thus the seven initial regression
datasets were transformed into seven classification datasets, ready to be processed by
the classification type of algorithms.

From the variety of the collected data from this study the metric of RMS error was
chosen to judge the fit of each machine learning algorithm to every artificially polluted
dataset. Though other metrics as the prediction accuracy or the classification error are
also used in many publications, the RMS error is a stricter and more suitable evaluator
of the efficiency of a certain algorithm in terms of a comparison study.
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Fig. 1. Example of a noise sensitivity diagram: RMSE and Noise-0 Relative RMSE areas.

In the next diagrams the sensitivity of the algorithms to noise is depicted, by the
form of noise curves. Each of the 7 problems is represented by a pair of diagrams,



one for the regression type and one for the classification type of algorithms. For every
diagram the left vertical axis represents the RMS error of the algorithms while on the
right vertical axis the noise-0 relative RMS error is measured. The latter error metric
is the difference of RMS error after the application of noise in data minus the RMS
error at the zero noise level. On the horizontal axis the gradually increasing levels of
artificial noise reside. The less sensitive algorithms to the presence of noise are those
that follow a noise-0 relative RMSE line as close to the horizontal axis as possible.

For readability and space compactness purposes it was chosen to have both RMSE
and noise-0 relative RMSE curves in the same diagram. These two curves are utilizing
different areas, as the example of fig.1 indicates. Area 1 containing the RMSE curves
always takes over the upper - upper left part of the diagram, while area 2 where the
noise-0 relative RMSE fits in is contained in the lower - lower right part of the diagram.

4.1 Inquiring the regression results

It is clear from the diagrams referring to the noise curves of the regression type algo-
rithms that their behavior varies from the artificial problems to the real-world problems.

In all of the four artificial problems A1-A4 the best algorithms show a very good fit
to the noise free problems at 0 noise level, but after that level their RMS error jumps
up abruptly and then evolves almost linearly. This behavior is more visible by watching
the noise-0 relative RMSE curves. For the first two linear problems A1 and A2 linear
regression proves to be the best method as expected, followed closely by M5. For the
two non-linear problems A3 and A4 M5 and IB-9 fit better. Though these algorithms
appear to have the better RMSE curves, their corresponding noise-0 relative RMSE
curves are among the worst. It emerges as a conclusion from the four problems A1-A4
that the weaker algorithms appear as the less sensitive to noise, and vice versa.

The real-world problems NO2, O3 and TOX present a different image. All RMSE
curves are gathered inside a narrow band, close to each other. In all cases linear re-
gression fits better the datasets of these problems. In disagreement with the conclusion
from the artificial problems A1-A4, the noise-0 relative RMSE curves mirror the same
behavior of their RMSE counterparts.

4.2 Exploring the classification results

For all the problems except TOX, VFI and HyperPipes are the less fit algorithms,
having RMSE curves over the reference algorithm ZeroR. Since ZeroR is used as an
efficiency threshold, all algorithms exhibiting RMSE curves over its own are considered
unsuitable for solving the problem at hand. From the other three algorithms, Decision
Table is the dominant one, having the lowest RMSE curve and the lowest noise-0
relative RMSE for all the seven problems studied in this report.

Another interesting finding is that the classification algorithms have noise curves
much less sensitive than those of the algorithms of the regression type. This may be
a result of the discretization of the dependent (output) variable. We assume that as
the number of the discrete bins of the discretization process increases, the average
slope of the noise curves will also increase so as to match this of the regression type of
algorithms when the number of bins reaches the infinity.
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Fig. 2. RMS and noise-0 relative RMS Error for the A1 Problem.
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Fig. 3. RMS and noise-0 relative RMS Error for the A2 Problem.

Problem A3

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 5 10 15 20 30 40 50
Noise Level %

R
M

S
E

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
N

o
is

e-
0 

R
el

at
iv

e 
R

M
S

E

Decision Table ZeroR HyperPipes

C4.5 C4.5Part VFI

Problem A3
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Fig. 4. RMS and noise-0 relative RMS Error for the A3 Problem.
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Fig. 5. RMS and noise-0 relative RMS Error for the A4 Problem.
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Fig. 6. RMS and noise-0 relative RMS Error for the NO2 Problem.

Problem O 3
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Problem O3
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Fig. 7. RMS and noise-0 relative RMS Error for the O3 Problem.



Problem O 3
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Problem O3
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Fig. 8. RMS and noise-0 relative RMS Error for the TOX Problem.

5 Conclusions

A study of machine learning algorithms on noise sensitivity is reported in this paper,
based on four artificial and three real world problems. A noise model has been tested,
for a noise level ranging from 0 to 0.5. The dependent variable was transformed from
numerical to nominal in order to test the classification algorithms. Thus a range of
regression type and classification type of algorithms have been examined by measuring
their sensitivity to noise, as artificially additive noise has been applied on the initial
datasets.

It has been showed that linear regression from the regression type of algorithms
adapts better to the gradually increasing noise levels. Also noticeable from the artificial
datasets A1-A4 is the fact that the better algorithms in terms of RMSE present the
greater noise sensitivity while the worst seem to be the less sensitive. Decision Table
seems to be the method the less sensitive to additive noise from the set of classification
learners. Not only does it show the best RMSE on all of the datasets, but exhibits a
good behavior in terms of the noise-0 relative RMSE.

Future work expanding the reported study includes further experiments on different
problems, and we believe that the forthcoming results will help in forming general
guidelines useful for the selection of the best machine learning algorithm for modeling
or prediction of problems prone to noise. At last it is worth noting that all data for
the examined datasets are originated from PERPA, the Greek air quality monitoring
authority.
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