
DESIGN OF A LOG-FILE MANAGMENT TOOL FOR EYE-TRACKING DATA

1

UNIVERSITY OF PATRAS

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

ELECTRONICS AND COMPUTERS FIELD

DESIGN OF A LOG-FILE MANAGEMENT TOOL FOR

EYE-TRACKING DATA

DIPLOMA THESIS OF

SAMUEL HERRERO GARCÍA

STUDENT OF THE UNIVERSIDAD DE VALLADOLID

SUPERVISOR: PROF.N.AVOURIS

DIPLOMA THESIS NUMBER

PATRAS 4, JULY 2011

DESIGN OF A LOG-FILE MANAGMENT TOOL FOR EYE-TRACKING DATA

2

DESIGN OF A LOG-FILE MANAGMENT TOOL FOR EYE-TRACKING DATA

3

It is certified that Diploma Thesis with the title:

DESIGN OF A LOG-FILE MANAGEMENT TOOL FOR

EYE-TRACKING DATA

Of the student of the University of Valladolid

Herrero García Samuel

(Surnames) (Name)

was presented in public at the Department of Electrical and Computer

Engineering of the University of Patras, Greece on July 4, 2011.

The supervisor The head of the Electronics and Computers division

N. AVOURIS E.CHOUSOS

DESIGN OF A LOG-FILE MANAGMENT TOOL FOR EYE-TRACKING DATA

4

DESIGN OF A LOG-FILE MANAGMENT TOOL FOR EYE-TRACKING DATA

5

Abstract

In this project I have tackled the design and implementation of a management tool for

the eye-tracking data. The main purpose is related with the huge amount of data and

metrics the user have to deal with so as to provide a graphical user interface (GUI) that

will enable shortening as a filter does.

Normally, the main labour after recording with the Tobii monitor of the department

generally is usual to write all the information as data output .tsv file format readable.

The overall issue is that commonly have large files, making endless work of finding the

data and metrics the user is looking for. Due to this, is why we have tried to find a

solution by implementing a User Interface (UI) based on the Python language

programming. For this special task, I have used one of the most used graphical

developing libraries, called wxPython. I have used IDLE as an integrated development

environment (IDE) for Python, which has been very useful as it has text editor with

syntax highlight and interactive shell.

Likewise, there are a lot of different libraries, parsers, and modules implemented in the

code of the application, in order to manage in a correct way other equally important

tasks that differ from the design.

Intentionally, and throughout the reading of this thesis, is explained in different chapters

how this useful tool can provide the user by a clear and neat way, a shorten list of

metrics available in a .tsv format file. There are mainly five chapters in which are

divided this thesis: Introduction, Theory and Analysis, Design, Development and

Implementation, and finally there is the Evaluation done with Results and Conclusions.

Keywords: eye-tracking, graphical user interface (GUI), Tobii, user interface (UI),

Python, wxpython, IDLE, IDE, .tsv format, module, parser.

DESIGN OF A LOG-FILE MANAGMENT TOOL FOR EYE-TRACKING DATA

6

DESIGN OF A LOG-FILE MANAGMENT TOOL FOR EYE-TRACKING DATA

7

Acknowledgments

Firstly, I would not know how to thank all those who have been with me not only during

these 5 months, but also during this long but beautiful stage, so I believed that there is

no better way to shape in this thesis a few words of gratitude.

Thanks to Irina Chounta, my supervisor, she has been always in a great mood, you have

been a great support during these months, constantly taking care and supervising my

work. I am very much indebted to her, for her motivation, encouragement and guide,

resulted in becoming interested in a new language programming as Python.

Likewise, I would like to thank all the members of the HCI group I have been enrolled

with, because they have allowed me to work in their laboratory and making me very

comfortable; Ioannis Ioannidis, a person that have been very kind in all moments,

spreading happiness during the days I was upset with Python, providing anything I

need, and of course, because of our musical exchange; Christos Sintoris who I have

seen a lot of days supervising the work of my Spanish colleges, and who has been

always interested in how I was going on; Filio Vogiantzi, who has helped me with every

kind of administrative papers. I want also to thank Professor Nikolaos Avouris (my

Erasmus coordinator in Patra), Dimitros Raptis and Eleftherios Papachristos for their

good reception when I came to Patra.

Similarly, I would like to thank the University of Valladolid for giving me the

opportunity to enjoy the experience lived abroad. Thanks to all the people I've met from

other countries, all my Erasmus friends, I've lived an unforgettable experience and all

thanks to an excellent company serves from them. I will never forget each one of you.

Finally, I thank of course the most important part, never stopped supporting me and

pushing me to the finish: my family. Thanks to my parents, María Luz, and José María.

Mam you have always made me see things as they are, aware every time what it takes to

achieve them, and dad, also thank you for being at every good or bad moment

supporting me in everything. Undoubtedly, you have given me everything. And of

course, my sister Berta (thank you for making me smile), grandmother (this report goes

for you, I did it!), and other members of the family. I love you

DESIGN OF A LOG-FILE MANAGMENT TOOL FOR EYE-TRACKING DATA

8

Contents
Abstract ... 5

Acknowledgments .. 7

CHAPTER 1 ... 12

INTRODUCTION .. 12

1.1 MOTIVATION .. 12

1.2 BACKGROUND ... 13

CHAPTER 2 ... 15

THEORY AND ANALYSIS ... 15

2.1 INTRODUCTION .. 15

2.2 WHY PYTHON ... 15

2.3 WXPYTHON ... 16

2.3.1 IDLE WXPYTHON .. 17

2.3.2 WXWIDGETS AS A GUI LIBRARY .. 18

2.4 EYE-TRACKER MONITOR ... 18

CHAPTER 3 ... 21

DESIGN ... 21

3.1 INTRODUCTION ... 21

3.2 CREATING AND USING THE TOP-LEVEL WINDOW OBJECT 23

3.2.1 WORKING WITH WX.FRAME .. 23

3.3DESIGNING THE NEW APP GUI .. 28

3.2.1 INITIAL WINDOW .. 28

3.2.2 SECOND WINDOW ... 31

3.2.3 THIRD FRAME .. 34

3.3 UNDERSTANDING THE APP OBJECT LIFECYCLE AS PART OF THE

DESIGN ... 37

3.4 HOW THE APP WORKS .. 38

CHAPTER 4 ... 40

DEVELOPMENT AND IMPLEMENTATION .. 40

4.1 INTRODUCTION .. 40

4.2 FEATURES IMPLEMENTED .. 40

4.2.1 PYTHON MODULES AND LIBRARIES DESCRIPTION 40

4.2.2 WORKING IN A EVENT-DRIVEN ENVIRONMENT 70

CHAPTER 5 ... 75

EVALUATION. ... 75

5.1 INTRODUCTION .. 75

5.2 SELECTING SUBJECTS IN TA ... 76

DESIGN OF A LOG-FILE MANAGMENT TOOL FOR EYE-TRACKING DATA

9

5.2.1 CRITERIA FOR SELECTING SUBJECTS ... 76

5.2.2 EXPERTS AS SUBJECTS .. 76

5.3 EVALUATION .. 77

5.4 RESULTS ... 78

5.5 CONCLUSIONS .. 80

CHAPTER 6 ... 81

CONCLUSIONS .. 81

References .. ¡Error! Marcador no definido.

GLOSSARY ... 83

DESIGN OF A LOG-FILE MANAGMENT TOOL FOR EYE-TRACKING DATA

10

LIST OF FIGURES

Figure 1. Raymond Dodge’s Photochronograph .. 13
Figure 2. Python logo ... 15

Figure 3. Python performance model in regard to other programming languages 16
Figure 4. wxPython logo .. 17
Figure 5. Screenshot of the IDLE interface of Python .. 18
Figure 6. Tobbii T60 Eye tracker ... 19
Figure 7. Technical Specification of T60 Eye tracker .. 20

Figure 8 How to design a GUI. Disorder frames vs. clear Window 22
Figure 9. Interconnections between wx.Frame() methods ... 24
Figure 10. the extended style wx.help.FRAME_EX_CONTEXTHELP 27

Figure 11. Thestyle=wx.DEFAULT_FRAME_STYLE|

wx.FRAME_TOOL_WINDOW. ... 27
Figure 12. The first window (frame) of the application and the related mechanics 30

Figure 13. Elements positioning in the second window (frame) 32
Figure 14. The wx.BoxSizer() functionality ... 32
Figure 15. Screenshot from the second window of the application 34

Figure 16. Schematic of the wxPython application structure ... 35
Figure 17. Screenshot of the third window of the application.. 37

Figure 18. The life-cycle of the application ... 38
Figure 19 Example of a tsv format file ... 39

Figure 20. Modules and libraries used in the application ... 40
Figure 21 SWIG wrapper for Python ... 42

Figure 22Size Matters in time Boost vs. SWIG Figure 23 Runtime test. Boost

vs. SWIG .. 42
Figure 24 Panel method in wx module ... 44
Figure 25 Button in different platforms .. 49

Figure 26 Button with wx.ToolTip method ... 50
Figure 27 wx.ListCtrl() method with two different lists ... 54
Figure 28 wx.CheckBox with two different states .. 55
Figure 29 Three different instances of wx.TextCtrl method ... 57
Figure 30 Alert message implemented with Message Dialog .. 59

Figure 31 Error message implemented with Message Dialog .. 60

Figure 32 Information message implemented with Message Dialog 60

Figure 33 Question message implemented with Message Dialog 61
Figure 34 wx.FileDialog method with os.getcwd ... 66
Figure 35 A schematic of the event handling cycle, showing the life of the main

program, a user event, and dispatch to handler fuctions .. 71
Figure 36 Even handling process, starting with the event triggered, and moving through

the steps of searching for a handler .. 72

file:///C:/Users/Samu/Dropbox/sam/Design%20of%20a%20Log-File%20managment%20tool%20for%20Eye-Tracking%20data-v2.docx%23_Toc297314070
file:///C:/Users/Samu/Dropbox/sam/Design%20of%20a%20Log-File%20managment%20tool%20for%20Eye-Tracking%20data-v2.docx%23_Toc297314072
file:///C:/Users/Samu/Dropbox/sam/Design%20of%20a%20Log-File%20managment%20tool%20for%20Eye-Tracking%20data-v2.docx%23_Toc297314074
file:///C:/Users/Samu/Dropbox/sam/Design%20of%20a%20Log-File%20managment%20tool%20for%20Eye-Tracking%20data-v2.docx%23_Toc297314089
file:///C:/Users/Samu/Dropbox/sam/Design%20of%20a%20Log-File%20managment%20tool%20for%20Eye-Tracking%20data-v2.docx%23_Toc297314099
file:///C:/Users/Samu/Dropbox/sam/Design%20of%20a%20Log-File%20managment%20tool%20for%20Eye-Tracking%20data-v2.docx%23_Toc297314100

DESIGN OF A LOG-FILE MANAGMENT TOOL FOR EYE-TRACKING DATA

11

LIST OF TABLES

Table 1. Description of the parameters used by the constructor 25

Table 2. Styles of the wx.Frame() method ... 28
Table 3 wx.SizerFlags in WX module ... 47
Table 4 wx.ListCtrl window styles ... 51
Table 5 wx.ListCtrl events handling ... 51
Table 6 wx.CheckBox window styles .. 55

Table 7 OS module styles windows ... 65

DESIGN OF A LOG-FILE MANAGMENT TOOL FOR EYE-TRACKING DATA

12

CHAPTER 1

INTRODUCTION

1.1 MOTIVATION

The motivation for this thesis was the limited number of tools that manipulate data

recorded from eye tracking monitors during various studies regarding analyzing

interfaces, measuring usability, gaining insight into human performance as well as an

actual control medium within a human-computer dialogue. The two areas have

generally been reported separately; but the aim purpose seeks to tie them together. For

usability analysis, the user’s eye movements while using the system are recorded and

later analyzed retrospectively, but the eye movements do not affect the interface in real

time. As a direct control medium, the eye movements are obtained and used in real time

as an input to the user-computer dialogue. The main purpose that will be discussed later,

will try to facilitate the user a graphical way, to obtain in such a simple and accurate

way, the huge amount of data collected during the recording with the Eye-Tracker

monitor.

Interestingly, the principal challenges for both retrospective and real time eye tracking

in Human Computer Interaction (HCI) turn out to be analogous. For retrospective

analysis, the problem is to find appropriate ways to use and interpret the data; here

becomes the main goal of this Thesis, empowering the individual through a user

graphical interface (GUI), and through a tool such as this application, so as to analyze

the data in an efficient, fast and clear way, trying to facilitate the comprehension of the

data obtained. And for real time use, the problem is to find appropriate ways to respond

judiciously to eye movement input, and avoid over-responding; it is not nearly as

straightforward as responding to well-defined, intentional mouse or keyboard input, but

this last part we will not mention it rather than, because it has not come to appreciate

neither been studied in depth.

These uses of eye tracking in HCI have been highly promising for many years, but

progress in making good use of eye movements in HCI has been slow to date. We see

promising research work, but we have not yet seen wide use of these approaches in

practice or in the marketplace. We will describe the promises of this technology, its

limitations, and the obstacles that must still be overcome. Work presented in this Thesis

and elsewhere shows that the field is indeed beginning to flourish.

DESIGN OF A LOG-FILE MANAGMENT TOOL FOR EYE-TRACKING DATA

13

1.2 BACKGROUND

The study of eye movements pre-dates the widespread use of computers by almost 100

years (for example, Javal, 1878/1879). Beyond mere visual observation, initial methods

for tracking the location of eye fixations were quite invasive – involving direct

mechanical contact with the cornea. Dodge and Cline(1901) developed the first precise,

non-invasive eye tracking technique, using light reflected from the cornea. Their system

recorded only horizontal eye position onto a falling photographic plate and required the

participant’s head to be motionless. Shortly after this, Judd, McAllister & Steel(1905)

applied motion picture photography to record the temporal aspects of eye movements in

two dimensions. Their technique recorded the movement of a small white speck of

material inserted into the participants’ eyes rather than light reflected directly from the

cornea. These and other researchers interested in eye movements made additional

advances in eye tracking systems during the first half of the twentieth century by

combining the corneal reflection and motion picture techniques in various ways (see

Mackworth & Mackworth, 1958 for a review).

Figure 1. Raymond Dodge’s Photochronograph

Much of the relevant work in the 1970s focused on technical improvements to increase

accuracy and precision and reduce the impact of the trackers on those whose eyes were

tracked. The discovery that multiple reflections from the eye could be used to dissociate

eye rotations from head movement (Cornsweet and Crane, 1973) increased tracking

precision and also prepared the ground for developments resulting in greater freedom of

participant movement. These developments traduced into innovation, was an essential

precursor to the use of eye tracking data in real-time as a means of human-computer

interaction (Anliker, 1976). Nearly all eye tracking work prior to this used the data only

retrospectively, rather than in real time (in early work, analysis could only proceed after

film was developed). The technological advances in eye tracking during the 1960s and

70s are still seen reflected in most commercially available eye tracking systems today.

Psychologists who studied eye movements and fixations prior to the 1970s generally

attempted to avoid cognitive factors such as learning, memory, workload, and

deployment of attention. Instead their focus was on relationships between eye

movements and simple visual stimulus properties such as target movement, contrast,

and location. Their solution to the problem of higher-level cognitive factors was “to

DESIGN OF A LOG-FILE MANAGMENT TOOL FOR EYE-TRACKING DATA

14

ignore, minimize or postpone their consideration in an attempt to develop models of the

supposedly simpler lower-level processes, namely, sensorimotor relationships and their

underlying physiology” (Kowler, 1990, p.1). But this attitude began to change gradually

in the 1970s. While engineers improved eye tracking technology, psychologists began

to study the relationships between fixations and cognitive activity. This work resulted in

some rudimentary, theoretical models for relating fixations to specific cognitive

processes. Of course scientific, educational, and engineering laboratories provided the

only home for computers during most of this period.

So eye tracking was not yet applied to the study of human-computer interaction at this

point. Teletypes for command line entry, punched paper cards and tapes, and printed

lines of alphanumeric output served as the primary form of human-computer interaction.

As Senders (2000) pointed out, the use of eye tracking has persistently come back to

solve new problems in each decade since the 1950s. Senders likens eye tracking to a

Phoenix raising from the ashes again and again with each new generation of engineers

designing new eye tracking systems and each new generation of cognitive psychologists

tackling new problems. The 1980s were no exception. As personal computers

proliferated, researchers began to investigate how the field of eye tracking could be

applied to issues of human-computer interaction. The technology seemed particularly

handy for answering questions about how users search for commands in computer

menus. The 1980s also ushered in the start of eye tracking in real time as a means of

human-computer interaction. Early work in this area initially focused primarily on

disabled users. In addition, work in flight simulators attempted to simulate a large, ultra-

high resolution display by providing high resolution wherever the observer was fixating

and lower resolution in the periphery (Tong, 1984). The combination of real-time eye

movement data with other, more conventional modes of user-computer communication

was also pioneered during the1980s.

In more recent times, eye tracking in human-computer interaction has shown modest

growth both as a means of studying the usability of computer interfaces and as a means

of interacting with the computer. As technological advances such as the Internet, e-mail,

and videoconferencing evolved into viable means of information sharing during the

1990s and beyond, researchers again turned to eye tracking to answer questions about

usability and to serves a computer input device.

DESIGN OF A LOG-FILE MANAGMENT TOOL FOR EYE-TRACKING DATA

15

CHAPTER 2

THEORY AND ANALYSIS

2.1 INTRODUCTION

This chapter arguments on the need of a tool that allows the user to collect information

obtained from .tsv files (text files that use tab as separator)where the Eye-Tracker data

are logged. According to users’ experience, the .tsv files were difficult to use and

manipulate, mainly because of their long size. In common scenarios of use, the time of

recording from the Eye-Tracker monitor, took about mostly half an hour, traduced to

take files with a huge amount of data. Besides, trying to sort some metrics, or even

values, becomes increasingly tedious.

The language programming chosen in this project is Python. It is a simple but very

efficient actual language that provides a lot of useful utilities. Ease of file handling is

one of the reasons that this language is used for the purposes of this diploma thesis. The

User Graphical Interface (GUI) is provided with the wxPython toolkit.

2.2 WHY PYTHON

The current Python version installed and used to develop this Project is from the

2.7.xseries, being the 2.7.1 the selected one.

Python is an interpreter, general-purpose high-level programming language

whose design philosophy emphasizes code readability. Python aims to combine

"remarkable power with very clear syntax", and its standard

library is large and comprehensive. Its use of indentation for

block delimiters is unique among popular programming

languages.

Python supports multiple programming paradigms, primarily

but not limited to object-oriented, imperative and, to a lesser

extent, functional programming styles. It features a fully

dynamic type system and automatic memory management,

similar to that of Scheme, Ruby, Perl, and Tcl. Like other dynamic languages, Python is

often used as a scripting language, but is also used in a wide range of non-scripting

contexts.

The reference implementation of Python (CPython) is free and open source software

and has a community-based development model, as do all or nearly all of its alternative

implementations. CPython is managed by the non-profit Python Software Foundation.

Python interpreters are available for many operating systems, and Python programs can

be packaged into stand-alone executable code for many systems using various tools.

Figure 2. Python logo

DESIGN OF A LOG-FILE MANAGMENT TOOL FOR EYE-TRACKING DATA

16

Moreover, the tool used to make the executable code is the py2exeprogramme that

allows packaging all the source files into the .exe file.

Figure 3. Python performance model in regard to other programming languages

2.3 WXPYTHON

WxPython is a GUI toolkit for the Python programming language. It allows Python

programmers to create programs with a robust, highly functional graphical user

interface, simply and easily. It is implemented as a Python extension module (native

code) that wraps the popular wxWidgets cross platform GUI library, which is written in

C++.

DESIGN OF A LOG-FILE MANAGMENT TOOL FOR EYE-TRACKING DATA

17

As we have said, like Python and wxWidgets,

wxPython is Open Source which means that it

is free for anyone to use and the source code is

available for anyone to look at and modify. Or

anyone can contribute fixes or enhancements

to the project.

WxPython is a cross-platform toolkit. This

means that the same program will run on

multiple platforms without modification.

Currently supported platforms are 32-bit Microsoft

Windows, most Unix or Unix-like systems, and

Macintosh OS X. The platform where the User Graphical Interface (GUI) has been

developed is Windows 7 Home Premium with the Service Pack 1 installed. The version

is the 2.8.11.0, one of the most famous and extended released of the wxpython

developments.

For Python language used, wxPython programs are simple, easy to write and easy to

understand.

2.3.1 IDLE WXPYTHON

IDLE is an integrated development environment for Python, which is bundled in each

release of the programming tool since 2.3. It is not included in the python package

included with many Linux distributions. It is completely written in Python and the

Tkinter GUI toolkit (wrapper functions for Tcl/Tk).

Its main features are:

 Multi-window text editor with syntax highlighting, auto completion, smart

indent and other.

 Python shell with syntax highlighting.

 Integrated debugger with stepping, persistent breakpoints, and call stack

visibility.

IDLE is often criticized for its non-standard keyboards shortcuts (unique to IDLE, with

only a manual schema editor available) and lack of line numbering as an option.

Nevertheless, this lack of keyboards shortcuts or even the line numbering, has not been

an impediment for the development of this project. The version installed for the

Python´s Integrated Development Environment (GUI)is the 2.7.1.

Figure 4. wxPython logo

DESIGN OF A LOG-FILE MANAGMENT TOOL FOR EYE-TRACKING DATA

18

Figure 5. Screenshot of the IDLE interface of Python

2.3.2 WXWIDGETS AS A GUI LIBRARY

WxWidgets gives a single, easy-to-use API for writing this GUI application on even

multiple platforms that still utilize the native platform's controls and utilities. It is linked

with the appropriate library for the platform used (Windows/Unix/Mac) and compiler

(almost any popular C++ compiler), and the application done adopts the look and feel

appropriate to that platform. In this Project, the application has been running in different

platforms, in order to know the different look for each one.

On top of great GUI functionality, wxWidgets gives: online help, network programming,

streams, clipboard and drag and drop, multithreading, image loading and saving in a

variety of popular formats, database support, HTML viewing and printing, and different

other utilities.

The version installed for the development of this Project has been the 2.8.11 series.

2.4 EYE-TRACKER MONITOR

The device that provides information and data to be treated and analyzed in our App for

eye tracking comes from the monitor used in the Human Computer Interaction (HCI)

group in the University of Patras.

Furthermore, without this tool could not be possible to develop any log-file in order to

give further information about the data gathered throughout all the process of eye

tracking.

Below is detailed some information about the monitor placed in this department as a

major part of the framework of this Project.

DESIGN OF A LOG-FILE MANAGMENT TOOL FOR EYE-TRACKING DATA

19

The exact model of the Tobbi monitor used for the analyzing data log-file tool

developed comes from the T Series, being the model T60 the one for eye-tracking.

Tobii T60 Series® brings user-centered design

into eye tracking technology, making eye

tracking studies easily accomplished. The T60

Series gives accurate eye gaze data and provides

an even more natural environment for the

subject to ensure realistic responses.

Since it is fully plug-and-play, the eye tracker

can be set up in minutes. Time and cost efficient

automatic tracking enables eye tracking in a lot

of different areas of application. In our case, it

has been used as a method of working that will

allow the technical user in futures studies to

easier understand and use the data collected.

Tobii T60 Eye Tracker® is integrated into a 17"

TFT monitor. It is one of the most efficient

monitors in the actual market for all forms of eye tracking studies using screen based

stimuli.

Overview & Specification of the T60 Eye-Tracker monitor [1]

Below is detailed some specifications of the Tobii monitor used in the Human Computer

Interaction (HCI)Department of the University of Patras.

 Plug-and-Play

Tobii T60Eye Tracker® carries out long lasting, robust calibrations in seconds.

Tracking is fully automatic and started by issuing a simple command. Advanced

technology and software saves the need for expertise. Large studies can be conducted in

an-efficient manner.

 Non-intrusive

Tobii T60Eye Tracker® has no visible or moving 'tracking devices' that might affect the

subject. The exceptionally large freedom of head movement allows respondents to

behave naturally in front of the screen. You can perform long and accurate studies

without fatigue.

 High tracking quality

High accuracy and excellent head movement compensation ensures high quality data

throughout your entire population. Tobii T60 Eye Tracker® tracks basically everyone,

regardless of ethnic origin, age, glasses or contact lenses. Drift compensation guarantees

high tolerance to varying light conditions.

Figure 6. Tobbii T60 Eye tracker

DESIGN OF A LOG-FILE MANAGMENT TOOL FOR EYE-TRACKING DATA

20

Figure 7. Technical Specification of T60 Eye tracker

DESIGN OF A LOG-FILE MANAGMENT TOOL FOR EYE-TRACKING DATA

21

CHAPTER 3

DESIGN

3.1 INTRODUCTION

This chapter focuses on the new User Interface UI design of the application. The design

has been based on several comments recorded from user experts and even from

experience in relation with the actual market in the design of applications.

It should be mentioned that the purpose of the development of this App is based on the

idea of allowing the normal or even technical user to figure out in an easy way how it

works, based on the main goal of enabling them to sort a number of metrics and values,

that are recorded in huge .tsv files, as output data from eye-tracking.

Furthermore, the simplicity of the App it´s related with the wxpython language

programming that has been very useful in order to show in a clear but also successful

and orderly way the contents in a log-file management tool.

Below is detailed as a point of view of Pablo Garaizar from Deusto University [2],

some of the main points a User Interface (UI) should be contained in each App.

 1 .- Effective Visual Communication for Graphical User Interfaces

The use of typography, symbols, color and other static and dynamic graphics are

commonly used to express facts, concepts and emotions. This forms consistent graphic

design-oriented information that helps people understand complex information.

Effective visual communication system is based on some basic principles of graphic

design.

 2 .- Design Considerations

Three factors may be considered for the design of a correct user interface, development

factors, feasibility factors and factors of acceptance.

Development factors help to improve visual communication. This includes toolkits and

libraries of components, supports rapid prototyping, and adaptability.

Feasibility factors into account human factors and express a strong visual identity. This

includes people skills, product identity, a clear conceptual model, and multiple

representations.

As factors of acceptance is the policy of the corporation, international markets, and

documentation and training.

DESIGN OF A LOG-FILE MANAGMENT TOOL FOR EYE-TRACKING DATA

22

 3.- The Visible Language

Visible Language refers to all the graphical techniques used to communicate the

message or context. This includes:

 Layout and Layout: formats, aspect ratios, and meshes (grids); organization:

either 2D or 3D.

 Typography: selection of fonts and styles, including fixed and variable width.

 Color and Texture: color, texture and luminance provide complex information

and pictorial reality.

 Images: signs, icons and symbols, from real to abstract photographically.

 Animation: a dynamic or kinetic display: very important in the use of video-

related images.

 Sequencing: sequencing the roughly total visual sequencing logic.

 Visual Identity: additional rules that provide consistency and unique set of user

interface.

 4 .- Principles of User Interface Design

There are three fundamental principles relating to the use of language visible:

 Organize: provide the user with a clear and consistent conceptual structure.

 Economize: do the most with the least amount of items.

 Communicate: adjust the presentation to the user's capabilities.

Figure 8 How to design a GUI. Disorder frames vs. clear Window

DESIGN OF A LOG-FILE MANAGMENT TOOL FOR EYE-TRACKING DATA

23

3.2 CREATING AND USING THE TOP-LEVEL WINDOW

OBJECT

In order to describe the design in this eye-tracking tool, we attempt a brief review of the

most basic aspects in the development of this application.

A top-level window object is a widget (usually a frame) that is not contained by another

widget in the application –it is what a typical user would point to and says, “That‟s the

program.”[] The top-level window object is usually the main window, in this case, all

the modules created, as part each one of the entire log-file management tool App, and

contains widgets and interface objects that the user interacts with.

The application must have at least one top-level window object. The top-level window

object is usually a subclass of the class wx.Frame from wxpython library, although it

can also be a subclass of wx.Dialog(). Besides there are defined a lot of custom

subclasses of wx.Frame inside the application throughout the developing of this Project.

However, there are a number of pre-defined wx.Dialog subclasses that provided many

of the typical dialogs that were very useful and helpful to encounter in the application.

As a matter of fact, there is some naming confusion here, due to overloading of the

word “top”. A generic “top-level” window is any widget in the application that doesn’t

have a parent container. So this is why the application programmed must have at least

one of these, but it can have as many as we would like. Only one of these windows,

however, can be explicitly defined by wxPython as the main top-window by using

SetTopWindow(). If there is not specify a main window with SetTopWindow, then the

first frame in the wx.App‟s top-level window list is considered to be the top window.

Therefore, explicitly specifying the top window is not always necessary –as it is not

needed to if, for example, there is only one top window. Repeated calls to

SetTopWindow() will replace the current top-window- an application can only have one

top-window at a time.

3.2.1 WORKING WITH WX.FRAME

In this subsection we discuss the most important element of each of the modules created

for this application: wx.Frame() method derived from the wxpython library.

DESIGN OF A LOG-FILE MANAGMENT TOOL FOR EYE-TRACKING DATA

24

Figure 9. Interconnections between wx.Frame() methods

In wxPython parlance, a frame is the name given to what a Graphical User Interface

(GUI) user normally calls a “window”[3]. That is to say, a frame is a container where

the user can generally move freely around on the screen, and which often includes such

decorations as a title bar, menu bar, and resize targets in the corners. The class

wx.Frame is the parent class of all frames in wxPython. There are also a few

specialized subclasses of wx.Frame that you may use. This section will give an

overview of the wx.Frame family.

When subclasses of wx.Frame are created, the __init__() method of in the class should

call the parent constructor wx.Frame.__init__(). The signature of that constructor is as

follows.

wx.Frame(parent, id=-1, title="Eye-Tracking",pos=wx.DefaultPosition,

size=wx.DefaultSize, style=wx.DEFAULT_FRAME_STYLE,

name="frame")

This constructor takes several parameters. In normal use, however, at least some of the

defaults are reasonable options. Afterwards we will see parameters similar to this

constructor again and again in other widget constructors used in this App as part of its

design.

Below is shown a table that contains description of each of the parameters[3]:

DESIGN OF A LOG-FILE MANAGMENT TOOL FOR EYE-TRACKING DATA

25

Table 1. Description of the parameters used by the constructor

These are the parameters as passed to the parent constructor method,

wx.Frame.__init__(). The argument signature of the constructor to our class can, and

often will, be different. This allows to conveniently ensuring default values for our own

frame by not allowing them to be modified by a call to the constructor.

class MyFrame(wx.Frame):

def __init__(self, parent, mytitle, mysize):

wx.Frame.__init__(self, parent, wx.ID_ANY, mytitle,

size=mysize,style=wx.MINIMIZE_BOX|wx.SYSTEM_MENU|

wx.CAPTION|wx.CLOSE_BOX|wx.CLIP_CHILDREN)

app = wx.App(0)

 # set title and size for the MyFrame instance

mytitle= "Eye Tracker Viewer -Shorting list of Values-"

width = 850

height = 700

style=wx.RESIZE_BORDER

MyFrame(None, mytitle, (width, height)).Show()

app.MainLoop()

DESIGN OF A LOG-FILE MANAGMENT TOOL FOR EYE-TRACKING DATA

26

3.2.1.1 Working with wx.Frame styles as design in the App GUI

As it is described above, the wx.Frame() method is the first thing that should be

instanced as a frame container where the user can generally move freely around on the

screen. That is why this method gathered a lot of metrics or parameters, to which it is

allowed to change the general perception of the window.

With this aim, there are parameters for this method, called bitmask. The wx.Frame

constructor takes a bitmask as a style parameter. Every wxPython widget object takes a

similar style parameter, although the exact values that are defined are different for each

type of widget. This section will discuss the styles used for wx.Frame. At least some of

this is applicable to other wxPython widgets used and instanced in this GUI

Application.

Firstly we introduce a new term coined in computer jargon and widely used today in

relation with wx.Frame constructor and its style parameters so as to design this Log-File

tool.[3]

 What is a BITMASK?

A bitmask is a way of compactly storing information about

system attributes that is especially useful when there are a

limited number of attributes with boolean values and the

values are more or less mutually independent. In wxPython,

bitmasks are used to manage a number of different

attributes throughout the framework, most notably style

information. In a bitmask, the individual attributes are

assigned constant values corresponding to powers of two,

and the value of the bitmask is the sum of all the attributes

which are “turned on”. In binary notation, the power of two

system guarantees that each attribute corresponds to a

single bit in the total sum, allowing all of the attribute state

to be compactly stored in a single integer or long value. For

example, if attribute a=1, b=2, c=4, and d=8, then any

combination of the group has a unique sum that can be

stored in an integer. The pair a and c would be 5 (binary

0101), while b, c, and d would be 14 (binary 1110). In

wxPython, the attributes have symbolic constants, so you

don‟t need to worry about the individual bit values.

As a matter of fact, developing the Graphical User Interface (GUI) for this Application

has been very useful to introduce the bitmask attribute. Styles are defined for all

wxPython widgets by passing a bitmask to the style parameter of the constructor. Some

widgets also define a SetStyle()method, allowing the changing in the style after the

widget is created. All the individual style elements used have a predefined constant

identifier (such as wx.MINIMIZE_BOX).To add multiple styles together, it is established

the Python bitwise OR operator|. For example, the constant

wx.DEFAULT_FRAME_STYLE is defined as a combination of basic style elements:

DESIGN OF A LOG-FILE MANAGMENT TOOL FOR EYE-TRACKING DATA

27

wx.MAXIMIZE_BOX | wx.MINIMIZE_BOX |

wx.RESIZE_BORDER|wx.SYSTEM_MENU | wx.CAPTION |

wx.CLOSE_BOX

The next four figures show a few common frame styles:

Figure 11 was created with wx.DEFAULT_STYLE. Figure 10 is a frame created using

the non-resizable style.

Figure 10.the extended style wx.help.FRAME_EX_CONTEXTHELP

Figure 11. The style=wx.DEFAULT_FRAME_STYLE | wx.FRAME_TOOL_WINDOW.

Below is detailed a list with the most important styles of the method wx.Frame as an

important issue in our App:

DESIGN OF A LOG-FILE MANAGMENT TOOL FOR EYE-TRACKING DATA

28

Table 2. Styles of the wx.Frame() method

3.3DESIGNING THE NEW APP GUI

As mentioned previously, the development of this App has to keep in mind several

points of how a user interface(UI)should be implemented.

Never before, anyone has developed any kind of App related with the issue concerning

with this Project, so there was no prior experience.

The App program consists basically in three main frames, interconnected with each one.

Apart from this, there are a lot of events referred to binding objects, which show

message dialogs, as it has been an important and deep concern for allowing the user to

understand the mechanics of the application.

3.2.1 INITIAL WINDOW

The first, main frame consists mainly in a browse-window where the user can open a

.tsv file with the data recorded from the Eye-Tracker monitor. This frame, as all the

frames described below, has in common the style of the background. It had to be a clear,

minimal window of a neutral color with a gray´s flush. The gray scale is coded with the

hexadecimal ·#EEEEEE and provides a clear view of all the buttons, text path, panel,

GridBagSizer and message dialogs that it contains.

DESIGN OF A LOG-FILE MANAGMENT TOOL FOR EYE-TRACKING DATA

29

Firstly, as an introduction to this window, the common user will discover how easy it

works by the opportunity of browsing a .tsv file. This main screen, is composed of a

number of methods all collected in the module menuv3.

By way of explanation, there is a Panel that contains a GridBagSizer method, a very

useful tool that comes from the wxpython widgets. The main purpose of this method is

to allow a perfect disposition of all the widgets that are going to be placed in the panel.

There is also a TextControl method instanced which permits gathering the path that

previously the user has chosen from the button Browse. After clicking this button, it

appears a new message-dialog, very common in all type of App, showing the current

folder with the files that are going to be selected.

Moreover, there are methods linked to all the buttons, called SetToolTip(),which are

imported from the library of wxpython, and shows by dragging the mouse above them a

little message as a short description of the binding method related with.

As a common issue in the development of the design for all frames in this Project, it has

been settled a non-resizable frame, with just a close and minimize button placed on the

upper-right corner of each frame.

Graphically and followed by these words is detailed the menuv3.py module as the main

and first frame shown to the user.

As a result, here are detailed the designing methods used in this initial frame:

 wx.Panel()

 wx.GridBagSizer()

 wx.TextControl()

 wx.messageDialogs()

 wx.SetToolTip()

 wx.Frame()

 wx.ShowModal()

 wx.Destroy()

DESIGN OF A LOG-FILE MANAGMENT TOOL FOR EYE-TRACKING DATA

30

Figure 12. The first window (frame) of the application and the related mechanics

3.2.1.1 Parser TSV among Initial and Second frame

Despite not having any graphics implementation of this Parser, it should highlight the

importance of including it in this chapter as part of the design, since without it, could

not reach the Second window module.

In computing, a parser is one of the components in an interpreter or compiler, which

checks for correct syntax and builds a data structure (in the case that occupies in this

Project one hierarchical structure related with metrics from the eye-tracking .tsv file)

implicit in the input tokens. The parser often uses a separate lexical analyzer to create

tokens from the sequence of input characters. Parsers may be programmed by hand or

may be (semi-)automatically generated (in some programming languages) by a tool. In

this case it is programmed by hand.

This parser works so that once the user has selected the metrics collected from the

selected path -remember it has to be a file with extension .tsv, with a large amount of

DESIGN OF A LOG-FILE MANAGMENT TOOL FOR EYE-TRACKING DATA

31

information and data- so that will be introduced in the second window as part of the list

parameters of the eye-tracking file.

3.2.2 SECOND WINDOW

Likewise the initial window, it has tried to follow the same pattern trying to provide the

user a clear and helpful frame, in order to figure out how the program works. It still has

the same background color, with mainly two lists, one with the metrics gathered -from

the .tsv file that in menuv3.py module, the user chose- and the other list with the

parameters list selected from the list on the left.

Apart from these two lists that mostly occupy the entire window, there are some more

widgets as buttons that allow full interoperability between them. There are three buttons

that divide the two lists, one for sorting the list on the left by name, and other two, that

simply offers the user to Add or Delete items from the list on the right.

The “list” method is contained in the code as wx.ListCtrl()from the wxpython library

with also a linked method connected with. Is remarkable to say that one of the main

goals on the designing of this Project was apart from the usability of it, but also provide

interaction between Interface and User. These aspects were considered as ones of the

most important goals while developing of the Project.

In addition, there are new methods included in the code of the module

SecondWindow.py such wx.ListCtrl(), already mentioned before as the most remarkable

method in the design of this frame, the wx.Centre() method that allows the frame to be

positioned in the central part of the screen, wx.messageDialogs()as part of the pop-ups

and alert messages, wx.showModal() and wx.Destroy() methods in related with this

alerts or advising messages that permits them to appear and disappear when an Ok or

Cancel button is clicked.

Briefly below it´s shown the mainly methods used for the design of this frame:

 wx.ListCtrl()

 wx.Centre()

 wx.messageDialogs()

 wx.showModal()

 wx.Destroy()

 wx.SetColumnWidth()

 wx.BoxSizer()

 wx.SetToolTip()

 wx.Frame()

Similarly, as it has been detailed in the list above, one of the main characteristics of this

frame it´s connected with the placement of the items throughout the window.

Thanks to the method called wx.BoxSizer() from the wxpython library, we are provided

by a highly useful design tool, that permits by a correct and orderly way to place

buttons, lists and all kind of widgets that wxpython provides.

DESIGN OF A LOG-FILE MANAGMENT TOOL FOR EYE-TRACKING DATA

32

The way of going positioning each of the elements is described below, as a part of a

jigsaw puzzle in which each of the elements are positioned within the sub-windows,

vertically or horizontally and are added to parent window in a hierarchical way.

It has been very useful for the development of this frame, and third window also, though

it takes a long time to think about the correct way of positioning each item along the

wx.BoxSizer().

Figure 13. Elements positioning in the second window (frame)

Below is described in a graphical way how the wx.BoxSizer() method works as a form

of designing tool for this secondwindow.py module.

Figure 14. The wx.BoxSizer() functionality

As shown in the illustration above, we can see the importance of making a preview of

how you can arrange each boxSizer, and as each one has a hierarchy among them. The

preview was established in a separate sheet, as an outline or sketch.

DESIGN OF A LOG-FILE MANAGMENT TOOL FOR EYE-TRACKING DATA

33

Not only about the graphical way of explaining the designing of this frame is important

but also the flags inside the wx.BoxSizer() method from wxpython library have to be

mentioned as a description of how can the elements and the style of itself could be

placed.

For instance, all buttons and even the two lists placed in the wx.BoxSizer() method are

part of smaller structures, as wx.BoxSizers() which are positioned horizontally or

vertically in a hierarchical way. Besides, they are added into the parent wx.BoxSizer()

with the wx.sizerAdd() method instanced. As a result, we have a main sizer (nº 1 in

figure 14) as the parent frame placed with VERTICAL flag; inside we have disposed

three frames (nº 2, 6 and 7 in figure14). Number nº2 is a HORIZONTAL sizer with title

of the App and logo. Number nº6 is also a HORIZONTAL sizer which contains Exit and

Next buttons. Finally number nº7is a HORIZONTAL sizer which itself contains another

three sizers (nº3, 4 and 5in figure 14). Number nº 3 and number nº 4 are added as

wx.ListCtrl() methods, and nº 5 is another sizer with VERTICAL flag which contains

three buttons.

Here it is a summary of how this method works while the elements are added to each

wx.BoxSizer()instanced as wx.SizerAdd() method:

Furthermore, below is shown one of the few alert messages instanced in the

SecondWindow.py module, as part of de design of this frame, which allows helpful

displays as the user can figure out how is going through the App:

DESIGN OF A LOG-FILE MANAGMENT TOOL FOR EYE-TRACKING DATA

34

Figure 15. Screenshot from the second window of the application

3.2.3 THIRD FRAME

As a result, and as a consequence of the compiling and running menuv3.py and

secondwindow.py modules, it can be displayed the third and last frame.

Therefore becomes a window that contains the previous window, a set of parameters

chosen by the user, and arranged in a list. It is thus that it can be seen if the number of

metrics collected exceeds the length of the list; an event resulted in a scrollbar, which

allows access to all the items simply by dragging the mouse.

The arrangement of all elements is parallel to the SecondWindow.py module according

to what was described in the preceding paragraph. So it is, that has been developed by

inserting a wx.BoxSizer() method. As stated earlier, this method has clearly each

wxPython widgets as it is provided to us. This is the mainly reason why finally it has

been used this valuable tool.

Mainly we observe that on top of this frame, we find two text boxes provided by the

method wx.TextCtrl() of wxPython library, where it controls two times. It is as much as

one entry into the starting time which the user wants to use to begin scanning the data of

each one of the metrics that you then select. On the other hand, immediately afterwards,

is the second box, which will be introduced from the typing keyboard the last time.

It should highlight the importance of these two text boxes that serve as data entry time.

This is mainly to provide a filter for all metrics selected and gathered into the list below;

by adapting into maximum data information the user wants to define.

DESIGN OF A LOG-FILE MANAGMENT TOOL FOR EYE-TRACKING DATA

35

In addition, now we are going to explain an issue not so much involved in the design,

but if an indirect way that influences on it. These are events produced by introducing the

wrong value of time, or for example if the initial time is higher than the final time, even

if times are not introduced in the range defined by the file in .tsv format.

This kind of events are instanced thanks to wx.messageDialog() widget from wxpython

library. It displays a numerous alert-messages, with pop-ups, related with the

mainLoop() method. It simply creates an instance of our application class, and then calls

its MainLoop() method. MainLoop() is the heart of the application and is where events

are processed and dispatched to the various windows in the application. Fortunately

wxWidgets insulates us from the differences in event processing in the various GUI

toolkits.

As the diagram below shows, the application object “owns” both the top-level window

and the main event loop. The top-level window manages the components in that

window, and any other data objects we assign to it. That window and its components

trigger events based on user actions, and receive event notifications to make changes in

the display.

A schematic of the basic wxPython application structure, showing the relationship

between the application object, the top-level window, and the main event loop, is

presented:

Figure 16. Schematic of the wxPython application structure

DESIGN OF A LOG-FILE MANAGMENT TOOL FOR EYE-TRACKING DATA

36

Nevertheless, after this subchapter, it will be explained how the lifecycle of the main

program works, as a review of the importance of some methods, and as an important

issue on the designing of this App.

Likewise some of the methods related with the development in the design of this frame,

are connected with also a lot of methods used previously.

Worth noting the wx.CheckBox() method, as a widget used for binding an event that

allows the user once finished to open the file chosen previously in a browse button

placed in one sizer. Each of these different methods used as widgets from the wxpython

library, are blinded with different type of events, which take into account the different

method calling.

Furthermore there are plenty of options within each of the calls to the various events

that take place at any time. Following is an example of how an alert message can be

displayed in the screen, and the parameters taken for detailing how it should work.

defexitEvent(self, event):
 """Exit Program"""

exitInfo = """Are you sure you want to exit?"""

exitBox = wx.MessageDialog(self, message=exitInfo,

caption='Exit Eye-Tracker App',

style=wx.ICON_EXCLAMATION | wx.STAY_ON_TOP | wx.OK | wx.CANCEL)

 result = exitBox.ShowModal()

exitBox.Destroy()

Briefly below it´s shown the mainly methods used for the design of this frame:

 wx.ListCtrl()

 wx.Centre()

 wx.messageDialogs()

 wx.showModal()

 wx.Destroy()

 wx.SetColumnWidth()

 wx.BoxSizer()

 wx.SetToolTip()

 wx.checkBox()

 wx.Show()

 wx.Frame()

The overview of this third frame contained in the ThirdWindow.py module is detailed

below:

DESIGN OF A LOG-FILE MANAGMENT TOOL FOR EYE-TRACKING DATA

37

Figure 17. Screenshot of the third window of the application

3.3 UNDERSTANDING THE APP OBJECT LIFECYCLE

AS PART OF THE DESIGN

The lifecycle of the wxPython application object begins when the application instance is

created and ends just after the last application window is closed. This does not

necessarily correspond to the beginning and ending of the Python script that surrounds

our wxPython application. The script may choose to do some activity before creating the

wxPython application, and may do further cleanup after the application MainLoop()

exits. All wxPython activity, however, must be performed during the life of the

application object. As it is mentioned, this means that our main frame object cannot be

created until after the wx.App object is created. (This is one reason why it is recommend

creating the top-level frame in the OnInit() method -doing so guarantees that the

application already exists-.)

As below is shown, creating the application object triggers the OnInit()method and

allows new window objects to be created. After OnInit(), the script calls MainLoop(),

signifying that wxPython events are now being handled. The application continues on its

merry way, handling events until the windows are closed. After all top-level windows

are closed, the MainLoop() function returns to the calling scope and the application

object is destroyed. After that, the script can close any other connections or threads that

might exist.

DESIGN OF A LOG-FILE MANAGMENT TOOL FOR EYE-TRACKING DATA

38

A major event in the wxPython application lifecycle, including the beginning and

ending of both the wxPython application and the script which surrounds it is shown

below.

Figure 18. The life-cycle of the application

One reason to be aware of the main application life-cycle is that, while active, a

wxPython application will take control of certain system functions, such as the standard

output streams.

3.4 HOW THE APP WORKS

This application was developed with the purpose of making a simple graphical interface

as well as functional. The main idea was to create an application that enables the users

to search data in a fast and selective way, so as to using files much more manageable

and small.

Here it is a brief resume of how the log-file management tool based on wxpython

programming language works:

 At first the user is presented with a window that operates as a browser-file. This

is the first step in which we will select the file in .tsv result of eye-tracking

monitor Tobii. In this first frame, there are help button (always attempted to

provide a helpful guide at all times to facilitate understanding of the program),

as well as an exit button and one next button to continue reading the metrics.

 Then, and depending on a small time delay (variable according to the size of the

.tsv file chosen in the initial window), we can see the second window. This frame

works as a first filter of selected metrics. The main idea was to resume in a clear

and fast way by using lists, and also buttons for adding or even removing

parameters, so that in this way could obtain as much data to read as the user

wanted. Likewise there is a button in the middle of the window, used to form

alphabetical order of all the metrics found in the file Tobii eye-tracking selected.

DESIGN OF A LOG-FILE MANAGMENT TOOL FOR EYE-TRACKING DATA

39

It has been supposed that it was also a good way to establish a certain order, and

thus facilitate the interaction between user and interface. In this way it is, and

just by pressing the next button we will continue through next frame, or if the

user deems it opportune, you can exit the application by selecting the exit button

and suddenly the ok button in the alert box will appear.

 Finally, we reach the third and last window. This frame provides the user a last

filter following two text boxes, which serve as time entry, and even more so

summary data collected in the metrics. It is here where it has tried to be more

careful in the sense that the entry of data such as time, is sensitive to any error in

both the format introduced, as in variables such as longer than the permitted in

ending time less than starting time... all error messages alerted to call the

attention of the user. It enables the user a list of previously selected and gathered

parameters, also appears on browse-file button (in case of failure to select any

file the user is notified), a checkbox widget that just in case is ticked the App will

open the selected file with Windows Notepad (it will depends on the operating

system) as well as a help button for help and guidance.

Figure 19 Example of a tsv format file

DESIGN OF A LOG-FILE MANAGMENT TOOL FOR EYE-TRACKING DATA

40

CHAPTER 4

DEVELOPMENT AND IMPLEMENTATION

4.1 INTRODUCTION

Mainly, this project has been focused basically in the development and implementation

of the application. Most of the time spent in the project has been used for this task. Due

to this, it has been decided to present a detailed report of the features that have been

designed and implemented in the application, some of them has been already mentioned

in the previous chapter, but nevertheless, is a must need to go back to discuss it in a

greater depth.

4.2 FEATURES IMPLEMENTED

Here below there are described the features used in the development and

implementation of this log-file management tool for eye-tracking data.

4.2.1 PYTHON MODULES AND LIBRARIES DESCRIPTION

Python usually stores its library (and thereby mine site-packages folder) in the

installation directory. So, as I had installed Python to C:\Python\, the default library is

resided in C:\Python\Lib\, and third-party modules are stored in C:\Python\Lib\site-

packages\. Here is a depth description of the different modules or libraries used in the

log-file App.

Figure 20. Modules and libraries used in the application

4.2.1.1 WX Python library

WxPython is a GUI toolkit for the Python programming language. It allows Python

programmers to create programs with a robust, highly functional graphical user

interface, simply and easily. It is implemented as a Python extension module (native

code) that wraps the popular wxWidgets cross platform GUI library, which is written in

C++.

Thank to this module, there are a lot of features implemented. More or less, we must

thank this module all about the design of the application. That is, all the methods used

DESIGN OF A LOG-FILE MANAGMENT TOOL FOR EYE-TRACKING DATA

41

and related to the implementation of the graphical log-file, inherited from the wx python

library as part of the widgets that have been used.

As a matter of fact, there have been changes throughout the importing of modules since

the first Python code was released. Here is a brief review, taken from the book

wxpython in Action[3]

 OLD STYLE IMPORTS

The first thing we need to do is import the main wxPython package,

which is named wx:

 import wx

Once that package is imported, you can refer to wxPython classes,

functions, and constants using the wx package name as a prefix, like

this:

 class App(wx.App):

Since the old naming convention is still supported, I have encountered

wxPython code written in the “old style”. So, I am going to digress

briefly explaining the “older style” and why it was changed. The old

package name was wxPython and it contained an internal module

named wx. There were two common ways to import the needed code -I

imported the wx module from the wxPython package:

 from wxPython import wx #ALMOST DEPRECATED

Or, I could import everything from the wx module directly.

 from wxPython.wx import * # ALMOST DEPRECATED

Both import methods had serious drawbacks. Using the second method

of import * is generally discouraged in Python because of the

possibility of namespace conflicts. The old wx module avoided this

problem by putting a wx prefix on nearly all of its attributes. Even with

this safeguard, import * still had the potential to cause problems, but

many wxPython programmers preferred this style, and it is normal to

see it used quite often in older code. One downside of this style was that

class names began with a lowercase letter, while most of the wxPython

methods begin with an uppercase letter -the exact opposite of the

normal Python programming convention. However, I have tried to

avoid the namespace bloat caused by import * by doing from wxPython

import wx, and this is the reason why now had to type “wx” twice for

each class, function, or constant name—once as the package prefix and

once as the “normal” prefix, such as wx.wxWindow. This got old fast.

Many wxPython programmers saw this dilemma as a wart that should

be removed, and eventually, it was.

DESIGN OF A LOG-FILE MANAGMENT TOOL FOR EYE-TRACKING DATA

42

One more thing to know about importing wxPython: I must import wx before I import

anything else from wxPython. In general, the order of imports in Python is irrelevant,

meaning you can import modules in any order. However, wxPython, although it looks

like a single module, is actually a complex set of modules (many of which are

automatically generated by a tool called the Simplified Wrapper and Interface

Generator, or SWIG) that wrap the functionality provided by the underlying wxWidgets

C++ toolkit.

4.2.1.1.1 SWIG

To build Python extension modules, SWIG uses a layered approach in which parts of the

extension module are defined in C and other parts are defined in Python. The C layer

contains low-level wrappers whereas Python code developed in this Application is used

to define high-level features.

This layered approach recognizes the fact that

certain aspects of extension building are

better accomplished in each language (instead

of trying to do everything in C or C++).

Furthermore, by generating code in both

languages, you get a lot more flexibility since

you can enhance the extension module with

support code in either language.

There are researches, that explained why is

helpful this kind of wrapper, and not for

example boost wrapper. For the development

of this App that have no long files, is shown

below a graphic that shows the differences in

terms of time, and measures how quickly

SWIG goes versus BOOST one [4]:

Figure 22Size Matters in time Boost vs. SWIG Figure 23 Runtime test. Boost vs. SWIG

Figure 21 SWIG wrapper for Python

DESIGN OF A LOG-FILE MANAGMENT TOOL FOR EYE-TRACKING DATA

43

4.2.1.1.2 Widgets provide in WX Module

Nearly all of the Graphical User Interface (GUI) made in the development of this log-

file management tool for eye-tracking data can be filled by wx module for Python. This

is the main reason for the need of writing in an extended way which are the features

implemented with this module throughout this entire App. In the following paragraphs I

will talk about some wxPython toolkits look like, such as buttons, checkboxes, list

boxes, text controls, etc. Some of the information written below has been collected from

the wxPython GUI toolkit webpage [5].

1. Wx.Panel() method

Inheritance diagram for wx.Panel:

This method has been used for the development and design of a Panel contained in the

initial frame, gathered in menuv3.py package.

A panel is a window on which controls are placed. It is usually placed within a frame. It

contains minimal extra functionality over and above its parent class wx.Window; its

main purpose is to be similar in appearance and functionality to a dialog, but with the

flexibility of having any window as a parent. In it there are placed a lot of widgets as

buttons, text control, a GridBagSizer, static text, etc.

 Parameters:

 parent (wx.Window)

 id (int)

 pos (wx.Point)

 size (wx.Size)

 style (long)

 name (string)

 Returns:

 wx.Panel

And here it is the code implemented in menuv3.pypackage:

panel = wx.Panel(self, -1, size=(500,300),

style=wx.DEFAULT|wx.NO_FULL_REPAINT_ON_RESIZE)

DESIGN OF A LOG-FILE MANAGMENT TOOL FOR EYE-TRACKING DATA

44

Below is shown the general appearance of the main panel contained in the first frame of

the “Eye-Tracking Data Extractor” Application:

Figure 24 Panel method in wx module

2. Wx.GridBagSizer() method

Inheritance diagram for wx.GridBagSizer:

This method has been used for the development and design of a virtual grid where can

be laid out items in the initial frame gathered in menuv3.py package.

A wx.Sizer that can lay out items in a virtual grid like a wx.FlexGridSizer but in this

case explicit positioning of the items is allowed using wx.GBPosition, and items can

optionally span more than one row and/or column using wx.GBSpan.

 Methods:

 __init__(vgap=0, hgap=0)

Constructor, with optional parameters to specify the gap between the rows and

columns.

 Parameters:

 vgap (int)

DESIGN OF A LOG-FILE MANAGMENT TOOL FOR EYE-TRACKING DATA

45

 hgap (int)

 Returns:

 wx.GridBagSizer

And here it is the code implemented in menuv3.py package:

sizer = wx.GridBagSizer(0, 0)

3. Wx.Sizer() method:

Inheritance diagram for wx.Sizer:

This method has been used in all the frames developed in the three main packages of

this “Eye Tracking Data Extractor” such as menuv3.py, SecondWindow.py and

ThirdWindow.py.

Wx.Sizer is the abstract base class used for laying out sub-windows in a window. It is

not allowed to use wx.Sizer directly; instead, I have to use one of the sizer classes

derived from it. As explained in the previous method above, the currently classes

are:wx.BoxSizer, wx.StaticBoxSizer, wx.GridSizer, wx.FlexGridSizer and

wx.GridBagSizer.

The layout algorithm used by sizers in wxWidgets is closely related to layout in other

GUI toolkits, such as Java‟s AWT, the GTK toolkit or the Qt toolkit. It is based upon the

idea of the individual sub-windows reporting their minimal required size and their

ability to get stretched if the size of the parent window has changed. This will most

often mean that while I programmed the design of the frames, I did not set the original

size of a dialog in the beginning, rather the dialog will be assigned a sizer and this sizer

will be queried about the recommended size. The sizer in turn will query its children,

which can be normal windows, empty space or other sizers, so that a hierarchy of sizers

can be constructed.

What makes sizers so well fitted for use in wxWidgets is the fact that every control

reports its own minimal size and the algorithm can handle differences in font sizes or

different window (dialog item) sizes on different platforms without problems, as part of

the tested App. If e.g. the standard font as well as the overall design of Motif widgets

requires more space than on Windows, the initial dialog size will automatically be

bigger on Motif than on Windows.

Sizers may also be used to control the layout of custom drawn items on the window.

The Add, Insert, and Prepend functions return a pointer to the newly added

wx.SizerItem method. Just add empty space of the desired size and attributes, and then

use the wx.SizerItem.

DESIGN OF A LOG-FILE MANAGMENT TOOL FOR EYE-TRACKING DATA

46

.

 Methods:

 __init__()

The constructor.

Note that wx.Sizer is an abstract base class and may not be instantiated.

 Add(item, proportion=0, flag=0, border=0, userData=None)

Appends a child to the sizer wx.Sizer. It is an abstract class, but the parameters are

equivalent in the derived classes that I have instantiated to use it so they are described

here:

 window: The window to be added to the sizer. Its initial size (either set explicitly

by the user or calculated internally when using wx.DefaultSize) is interpreted as

the minimal and in many cases also the initial size.

 sizer: The (child-)sizer to be added to the sizer. This allows placing a child sizer

in a sizer and thus to create hierarchies of sizers.

 width and height: The dimension of a spacer to be added to the sizer. Adding

spacers to sizers gives more flexibility in the design of dialogs; for example in

the development of the third frame, there are horizontal boxes with two buttons

at the bottom of a dialog: so the main purpose is to insert a space between the

buttons and make that space stretchable using the proportion flag and the result

will be that the left button will be aligned with the left side of the dialog and the

right button with the right side - the space in between will shrink and grow with

the dialog.

 proportion: Although the meaning of this parameter is undefined in wx.Sizer, it

is used in wx.BoxSizer to indicate if a child of a sizer can change its size in the

main orientation of the wx.BoxSizer – where 0 stands for not changeable and a

value of more than zero is interpreted relative to the value of other children of

the same wx.BoxSizer. For example, in the development of the Eye-Tracking

data Extractor, there is in the SecondWindow.py module a horizontal

wx.BoxSizer with three children, two of which are supposed to change their size

with the sizer. Then the two stretchable windows get a value of 1 each to make

them grow and shrink equally with the sizer‟s horizontal dimension.

 flag: This parameter can be used to set a number of flags which can be

combined using the binary OR operator |. Two main behaviors are defined using

these flags. One is the border around a window: the border parameter

determines the border width whereas the flags given here determine which

side(s) of the item that the border will be added. The other flags determine how

the sizer item behaves when the space allotted to the sizer changes, and is

somewhat dependent on the specific kind of sizer used:

DESIGN OF A LOG-FILE MANAGMENT TOOL FOR EYE-TRACKING DATA

47

 border: Determines the border width, if the flag parameter is set to include

any border flag.

 userData: Allows an extra object to be attached to the sizer item, for use in

derived classes when sizing information is more complex than the proportion

and flag will allow for.

 flags: A wx.SizerFlags object that enables you to specify most of the above

parameters more conveniently.

Table 3wx.SizerFlags in WX module

 Parameters:

 item: The item to add to the sizer.

 proportion (int)

 flag (int)

 border (int)

 userData (PyObject)

 wx.TOP

 wx.BOTTOM

 wx.LEFT

 wx.RIGHT

 wx.ALL

These flags are used to specify which side(s)

of the sizer item that the border width will

apply to.

 wx.EXPAND The item will be expanded to fill the space

allotted to the item.

 wx.SHAPED The item will be expanded as much as

possible while also maintaining its aspect

ratio

 wx.FIXED_MINSIZE Normally wx.Sizers

use wx.Window.GetMinSize or wx.Window.G

etBestSize to determine what the minimal

size of window items should be, and will use

that size to calculate the layout. This allows

layouts to adjust when an item changes and

its best size becomes different. If it is already

a window item stay the size it started with

then use wx.FIXED_MINSIZE.

 wx.ALIGN_CENTER

 wx.ALIGN_LEFT

 wx.ALIGN_RIGHT

 wx.ALIGN_TOP

 wx.ALIGN_BOTTOM

 wx.ALIGN_CENTER_VERTICAL

 wx.ALIGN_CENTER_HORIZONTAL

The wx.ALIGN flags allow you to specify the

alignment of the item within the space

allotted to it by the sizer, adjusted for the

border if any.

http://www.wxpython.org/docs/api/wx.Window-class.html#GetMinSize
http://www.wxpython.org/docs/api/wx.Window-class.html#GetBestSize
http://www.wxpython.org/docs/api/wx.Window-class.html#GetBestSize

DESIGN OF A LOG-FILE MANAGMENT TOOL FOR EYE-TRACKING DATA

48

 Returns:

 wx.SizerItem

Here it is the code implemented in the SecondWindow.py module, as a result of various

sizers used, which allow to display in the frame two list boxes, different buttons, the

title, the logo display on the upper right side, everything gathered into a BoxSizer, that

we already talked about in the previous chapter, but also I will explain it in a greater

depth, as an important method of the wx python module.

use a vertical boxsizer as main layout sizer

sizer_v = wx.BoxSizer(wx.VERTICAL)

use a vertical boxsizer to put into main layout sizer

sizer_v2Title = wx.BoxSizer(wx.HORIZONTAL)

sizer_v3Cajas = wx.BoxSizer(wx.VERTICAL)

sizer_v4ListParametres = wx.BoxSizer(wx.HORIZONTAL)

sizer_v5NextCancel = wx.BoxSizer(wx.HORIZONTAL)

use a vertical sizer for the buttons

sizer_v2Title.Add(text1, 1, flag=wx.EXPAND|wx.LEFT, border=15)

sizer_v2Title.Add(icon, 1, flag=wx.EXPAND|wx.LEFT, border=150)

sizer_v3Cajas.Add(sort_parametres, 1, flag=wx.ALL|wx.EXPAND, border=5)

sizer_v3Cajas.Add(Add_Item, 1, flag=wx.ALL|wx.EXPAND, border=5)

sizer_v3Cajas.Add(Delete_Item, 1, flag=wx.ALL|wx.EXPAND, border=5)

sizer_v4ListParametres.Add(self.lc,1,flag=wx.ALL|wx.EXPAND, border=10)

sizer_v4ListParametres.Add(sizer_v3Cajas,0,flag=wx.ALL|wx.EXPAND,

border=10)

sizer_v4ListParametres.Add(self.lc2,1,flag=wx.ALL|wx.EXPAND,border=10)

sizer_v5NextCancel.Add(Exit_button,1,flag=wx.ALL|wx.EXPAND, border=5)

sizer_v5NextCancel.Add(Next_button,1,flag=wx.ALL|wx.EXPAND, border=5)

add the rest + sizer_h to the vertical sizer

sizer_v.Add(sizer_v2Title,0,flag=wx.ALL|wx.EXPAND|wx.RIGHT,

border=10)sizer_v.Add(sizer_v4ListParametres,2,flag=wx.ALL|wx.EXPAND|w

x.RIGHT, border=10)

sizer_v.Add(sizer_v5NextCancel,0,flag=wx.ALL|wx.EXPAND,border=10)

self.SetSizer(sizer_v)

self.Centre()

4. Wx.Button() method:

Inheritance diagram for wx.Button:

DESIGN OF A LOG-FILE MANAGMENT TOOL FOR EYE-TRACKING DATA

49

Along the code implemented in the “Eye-Tracking Data Extractor Application” there

are several buttons, instanced with the wx.button() method. A button is a control that

contains a text string, and is one of the most common elements of the Graphic User

Interface (GUI). It may be placed on a dialog or panel (as it has been done in most of

the modules), or indeed almost any other window.

Here are some examples as how a button can be displayed in different platforms:

Figure 25 Button in different platforms

 Methods:

 __init__(parent, id=-1, label="", pos=wx.DefaultPosition, size=wx.DefaultSize,

style=0, validator=wx.DefaultValidator, name=wx.ButtonNameStr)

Create and show a button. The preferred way to create standard buttons is to use a

standard ID and an empty label. In this case wxWidgets will automatically use a stock

label that corresponds to the ID given. These labels may vary across platforms as the

platform itself will provide the label if possible. In the case we are dealing with, the

platform where the code has been implemented is Windows 7 Home Premium. In the

image shown above this paragraph matches with the first button displayed.

 Parameters:

 parent (wx.Window)

 id (int)

 label (string)

 pos (wx.Point)

 size (wx.Size)

 style (long)

 validator (wx.Validator)

 name (string)

 Returns:

 wx.Button

It is worth mentioning in this section on a widely used tool in relation to the method

described above. I will write a brief resume, as just an introduction in order to provide

an overall idea.

DESIGN OF A LOG-FILE MANAGMENT TOOL FOR EYE-TRACKING DATA

50

Wx.SetToolTip():

The main purpose of this method is to attach a tooltip to the window.

 Parameters:

 tip (wx.ToolTip)

Above we can see how this useful tool is displayed in the Application, particularly, is

implemented in the third frame of the “Eye-Tracking Data Extractor”:

Figure 26 Button with wx.ToolTipmethod

As a result, here it is the code for this method implemented in the ThirdWindow.py

package:

Exit_button = wx.Button(self, wx.ID_ANY, "Exit")

Exit_button.SetToolTip(wx.ToolTip("Press Exit button to skip the

application"))

5. Wx.ListCtrl() method:

Inheritance diagram for wx.ListCtrl():

A list control presents lists in a number of formats: list view, report view, icon view and

small icon view. In any case, elements are numbered from zero. For all these modes, the

items are stored in the control and must be added to it using InsertItem() method.

A special case of report view quite different from the other modes of the list control is a

virtual control in which the items data (including text, images and attributes) is

managed by the main program and is requested by the control itself only when needed

which allows to have controls with millions of items without consuming much memory.

To intercept events from a list control, I have used the event table macros described in

wx.ListEvent(), which we will discuss with greater depth hereafter.

DESIGN OF A LOG-FILE MANAGMENT TOOL FOR EYE-TRACKING DATA

51

 Window styles:

Window Style Description

wx.LC_LIST Multicolumn list view, with optional small icons. Columns

are computed automatically, i.e. you don’t set columns as

inwx.LC_REPORT. In other words, the list wraps, unlike

a wx.ListBox.

wx.LC_REPORT Single or multicolumn report view, with optional header.

wx.LC_VIRTUAL The application provides items text on demand. May only be

used with wx.LC_REPORT.

wx.LC_ICON Large icon view, with optional labels.

wx.LC_SMALL_ICON Small icon view, with optional labels.

wx.LC_ALIGN_TOP Icons align to the top. Win32 default, Win32 only.

wx.LC_ALIGN_LEFT Icons align to the left.

wx.LC_AUTOARRANGE Icons arrange themselves. Win32 only.

wx.LC_EDIT_LABELS Labels are editable: the application will be notified when

editing starts.

wx.LC_NO_HEADER No header in report mode.

wx.LC_SINGLE_SEL Single selection (default is multiple).

wx.LC_SORT_ASCENDING Sort in ascending order (must still supply a comparison

callback in SortItems.

wx.LC_SORT_DESCENDING Sort in descending order (must still supply a comparison

callback in SortItems.

wx.LC_HRULES Draws light horizontal rules between rows in report mode.

wx.LC_VRULES Draws light vertical rules between columns in report mode.
Table 4wx.ListCtrlwindow styles

Here above there is a list with the most commons events bind to the wx.ListCtrl()

method. Further on, we will discuss about Events, and we will talk about the events of

this method, as it is considered one of the main methods used in the development of the

“Eye-Tracking Data Extractor” Application.

 Event handling:

EventName Description

wx.EVT_LIST_BEGIN_DRAG(id, func) Begin dragging with the left mouse button.

wx.EVT_LIST_BEGIN_RDRAG(id, func) Begin dragging with the right mouse button.

wx.EVT_LIST_BEGIN_LABEL_EDIT(id,

func)

Begin editing a label. This can be prevented

by calling Veto.

wx.EVT_LIST_END_LABEL_EDIT(id, func) Finish editing a label. This can be prevented

by calling Veto.

wx.EVT_LIST_DELETE_ITEM(id, func) Deleteanitem.

wx.EVT_LIST_DELETE_ALL_ITEMS(id,

func)

Deleteallitems.

wx.EVT_LIST_ITEM_SELECTED(id, func) The item has been selected.

wx.EVT_LIST_ITEM_DESELECTED(id,

func)

The item has been deselected.

wx.EVT_LIST_ITEM_ACTIVATED(id, func) The item has been activated (ENTER or

double click).

wx.EVT_LIST_ITEM_FOCUSED(id, func) The currently focused item has changed.
Table 5wx.ListCtrl events handling

http://xoomer.virgilio.it/infinity77/wxPython/Widgets/wx.ListBox.html

DESIGN OF A LOG-FILE MANAGMENT TOOL FOR EYE-TRACKING DATA

52

 Methods:

 __init__(parent, id=-1, pos=wx.DefaultPosition, size=wx.DefaultSize,

style=wx.LC_ICON,validator=wx.DefaultValidator, name=wx.ListCtrlNameStr)

 Parameters:

 parent (wx.Window)

 id (int)

 pos (wx.Point)

 size (wx.Size)

 style (long)

 validator (wx.Validator)

 name (string)

 Returns:

 wx.ListCtrl

Here are other methods from the Class API.I thought it would be appropriate that should

be named as an important part in the realization of the application, and which are

described in the implementation of the code. Then we will see an example used in the

SecondWindow.py package of the Application.

 Append(entry)

Append an item to the list control. The entry parameter should be a sequence

with an item for each column.

o Parameters:

 entry (tuple)

 DelleteAllColumns()

 DeleteAllItems()

Deletes all items in the list control.

o Returns:

 Bool

 DeleteColumn(col)

Deletes a column.

o Parameters:

 col (int)

DESIGN OF A LOG-FILE MANAGMENT TOOL FOR EYE-TRACKING DATA

53

o Returns:

 Bool

 DeleteItem(item)

Deletes the specified item. This function sends the

wxEVT_COMMAND_LIST_DELETE_ITEM event for the item being deleted.

o Parameters:

 item (long)

o Returns:

 Bool

self.lc = wx.ListCtrl(self, wx.ID_ANY,

style=wx.LC_REPORT|wx.SUNKEN_BORDER|wx.LC_HRULES)

self.lc.InsertColumn(0,"Parametres-List matched in the .tsv

file")

self.lc.SetColumnWidth(0, 580)

defloadList(self):

 # clear the listctrl

self.lc.DeleteAllItems()

DESIGN OF A LOG-FILE MANAGMENT TOOL FOR EYE-TRACKING DATA

54

 # load each data row

 for ix, line in enumerate(self.states):

 # set max_rows, change if need be

max_rows = 100

 # also sets/updates row index starting at 0

 index = self.lc.InsertStringItem(max_rows, line)

defonAdd_Item(self, event):

ix_selected = self.lc.GetNextItem(item=-1,

geometry=wx.LIST_NEXT_ALL,

state=wx.LIST_STATE_SELECTED)

 state = names0[ix_selected]

 s2.insert(0,state)

 index=self.lc2.InsertStringItem(0,s2[0])

self.lc2.SetStringItem(index,0,s2[0])

defonDelete_Item(self, event):

 ix_selected3 = self.lc2.GetFocusedItem()

self.lc2.DeleteItem(self.lc2.GetFocusedItem())

defonSelect(self, event):

wx.LIST_STATE_SELECTED get the selected item

ix_selected=self.lc.GetNextItem(item=-1,

geometry=wx.LIST_NEXT_ALL,state=wx.LIST_STATE_SELECTED)

state = names0[ix_selected]

s1=[]

 s1.append(state)

As a result of the code shown above, there is the frame related with the second frame of

the SecondWindow.py package that displays the wx.ListCtrl() method implemented:

Figure 27wx.ListCtrl() method with two different lists

DESIGN OF A LOG-FILE MANAGMENT TOOL FOR EYE-TRACKING DATA

55

6. Wx.CheckBox() method:

Inheritance diagram for wx.CheckBox:

This special method has been instanced in the ThirdWindow.py package, as a result of

the need of having a check box, that when is ticked, and previously the user has chosen

a file where to save the data resulted of the metrics and time selected, it will be

displayed the .tsv file with the data written on it.

A checkbox is a labeled box which by default is either on (checkmark is visible) or off

(no checkmark).

 Window styles:

Window Style Description

wx.CHK_2STATE Create a 2-state checkbox. This is the default.

wx.CHK_3STATE Create a 3-state checkbox. Not implemented

in wxMGL, wxOS2 and wxGTK built against

GTK+ 1.2.

wx.CHK_ALLOW_3RD_STATE_FOR_USER By default a user can’t set a 3-

state checkbox to the third state. It can only

be done from code. Using this flags allows

the user to set the checkbox to the third state

by clicking.

wx.ALIGN_RIGHT Makes the text appear on the left of

the checkbox.
Table 6wx.CheckBox window styles

The method is instanced with the wx.CHK_2STATE, as it is the default, and we don´t

need any more states.

 Control Appearance:

Figure 28wx.CheckBox with two different states

DESIGN OF A LOG-FILE MANAGMENT TOOL FOR EYE-TRACKING DATA

56

 Methods:

 _init__(parent, id=-1, label="", pos=wx.DefaultPosition, size=wx.DefaultSize,

style=0, validator=wx.DefaultValidator, name=wx.CheckBoxNameStr)

Creates and shows a wx.CheckBox control as we can see in the picture above, and

we can see implemented in the code below.

 Parameters:

 parent (wx.Window)

 id (int)

 label (string)

 pos (wx.Point)

 size (wx.Size)

 style (long)

 validator (wx.Validator)

 name (string)

 Returns:

 wx.CheckBox

Here is the example of the code implemented for creating this widget, as the result of

implementing the wx.checkbox() method.

view_button=wx.CheckBox(self,wx.ID_ANY,style=wx.CHK_2STATE)
view_button.SetToolTip(wx.ToolTip("Press here to open the file"))

 Wx.StaticText() method:

Inheritance diagram for wx.StaticText:

Along the “Eye-Tracking Data Extractor” Application there have been instanced a lot

of static text methods, in order to placed text in the different frames. Mostly, it has

served to design a clear and visual way in which the windows are.

Basically, a static text control displays one or more lines of read-only text.

Significantly, in the great majority of instances, these methods have been positioned

within other methods as in the case of the wx.BoxSizer()we have already discussed

before. It has been possible with the wx.Add() method, just choosing the right place in

the Box Sizer.

DESIGN OF A LOG-FILE MANAGMENT TOOL FOR EYE-TRACKING DATA

57

 Control Appearance:

This is how it looks the static text in the ThirdWindow.py package, where the lines of

text related with this method are framed in red color. Depending on the platform, we

will see different visual effect on the text, as in this example, it has been run under

Windows 7 Home Premium:

Figure 29 Three different instances of wx.TextCtrl method

 Method from the Class API:

 __init__(parent, id=-1, label="", pos=wx.DefaultPosition, size=wx.DefaultSize,

style=0, name=wx.StaticTextNameStr)

 Parameters:

 parent (wx.Window)

 id (int)

 label (string)

 pos (wx.Point)

 size (wx.Size)

 style (long)

 name (string)

 Returns:

 wx.StaticText

And here below is detailed the code related with this method, taken from the

ThirdWindow.py package, as it has been used throughout the four frames implemented

in this Application. Note that there are placed into a Box Sizer detailed in next page.

DESIGN OF A LOG-FILE MANAGMENT TOOL FOR EYE-TRACKING DATA

58

create titles for each boxsizer

text2 = wx.StaticText(self, -1, 'View results from ...(->

Format required: HH:MM:SS,mmm<-)')

text5 = wx.StaticText(self, -1,'Type Time -> FROM: ')

text6 = wx.StaticText(self, -1, ' TO: ')

text3 = wx.StaticText(self, -1, ' Choose where do you

want to save data... ')

 text4 = wx.StaticText(self, -1, ' Press here if you want

to see the file with data ')

sizer_Title.Add(text1, 0, flag=wx.EXPAND|wx.LEFT, border=15)

sizer_Results2.Add(text2, 0, flag=wx.ALL|wx.EXPAND, border=5)

sizer_Results3.Add(text5, 0, flag=wx.ALL|wx.EXPAND,

border=5)sizer_Results3.Add(text6, 0, flag=wx.ALL|wx.EXPAND,

border=5)sizer_Save.Add(text3, 1, flag=wx.EXPAND|wx.ALL,

border=5)

sizer_ViewFile.Add(text4, 1, flag=wx.ALL|wx.EXPAND, border=5)

7. Wx.Dialog() method:

Inheritance diagram for wx.Dialog:

During the realization of this project has been used on numerous occasions this method.

It is considered one of the most important because it has been possible to provide a

variety of ways with a better understanding of what goes on in the program. This is

mainly because there is a window with information in the form of warning, advice or

even to offer the user a second chance (see the example given by this method in use to

close the application, provided they do not close it because of user error, ensuring that

you are ending it).

This class represents a dialog that shows a single or multi-line message, with a choice

of OK, Yes, No and Cancel buttons.

 Methods in Class API:

 __init__(parent, message, caption=wx.MessageBoxCaptionStr,

style=wx.OK|wx.CANCEL|wx.CENTRE, pos=wx.DefaultPosition)

DESIGN OF A LOG-FILE MANAGMENT TOOL FOR EYE-TRACKING DATA

59

The Constructor, use ShowModal() method from the wx module in python in order

to display the dialog.

 Parameters:

 parent (wx.Window)

 message (string)

 caption (string)

 style (long)

 pos (wx.Point

 Returns:

 Wx.MessageDialog

And other methods included in the wx.MessageDialog() are the wx.ShowModal() and

also it has to be mentioned the wx.Destroy().

The ShowModal() method allows the Application to mainly show the dialog, returning

one of the wx.ID_OK, wx.ID_CANCEL, wx.ID_YES or wx.ID_NO. On the other hand

the Destroy() method hide and kill the process routine of the Message Dialog is running

in.

Below we can see some examples used in the “Eye-Tracking Data Extractor”

Application along all the packages implemented:

Figure 30 Alert message implemented with Message Dialog

DESIGN OF A LOG-FILE MANAGMENT TOOL FOR EYE-TRACKING DATA

60

Figure 31 Error message implemented with Message Dialog

Figure 32 Information message implemented with Message Dialog

DESIGN OF A LOG-FILE MANAGMENT TOOL FOR EYE-TRACKING DATA

61

The code related with the figures displayed above is described below:

1. Alert message dialog displayed in the first figure:

def onDelete_Item(self, event):

ix_selected3 = self.lc2.GetFocusedItem()

if ix_selected3==-1:

alertInfo = "Please follow the next steps:" + "\r1- You

must select a parametre from the list on the left" + "\r2-

Click and press Add Item to chose one" +"\r3- If you have

already chosen one, please click one parametre and press

Delete Button"

alertBox = wx.MessageDialog(self,message=alertInfo,

caption='First Select a Parametre in the list on the

left'style=wx.ICON_EXCLAMATION | wx.STAY_ON_TOP | wx.OK)

result = alertBox.ShowModal()

alertBox.Destroy()

if result == wx.ID_OK:

 alertBox.Destroy()

Figure 33 Question message implemented with Message Dialog

DESIGN OF A LOG-FILE MANAGMENT TOOL FOR EYE-TRACKING DATA

62

2. Error message dialog displayed in the second figure:

def onAdd_Item(self, event):

ix_selected = self.lc.GetNextItem(item=-1,

geometry=wx.LIST_NEXT_ALL, state=wx.LIST_STATE_SELECTED)

 state = names0[ix_selected]

 for data in s2:

 if str(state) in s2:

 data2 = 1

 dlg = wx.MessageDialog(self, "Please choose another parametre,

this is already in the list ","Parametre already selected ",

wx.OK|wx.ICON_ERROR)

result = dlg.ShowModal()

dlg.Destroy()

3. Information message for the help window display in the ThirdWindow.py

package:

def onHelpButton (self,event):

d=wx.MessageDialog(self, "In this Frame, the user will

see a Sort-Parametres list chosen before. Follow next

steps"+"\r1- Introduce a Start TIME in correct format" +

"\r2- Introduce an Ending TIME in correct format"+"\r3-

Press browse button to choose a file where save DATA" +

"\r4- It is possible to open the file selected","Help menu",

wx.OK)

d.ShowModal()

 d.Destroy()

4. Finally the code related with the exiting App when is pressed the close

cross in the upper right side of the third frame. It is displayed with the

interrogation icon, and there are two possibilities gathered into two

buttons.

DESIGN OF A LOG-FILE MANAGMENT TOOL FOR EYE-TRACKING DATA

63

 def OnClose(self, event):

"""Exit App"""

 dlg = wx.MessageDialog(self,

"Do you really want to close this application?",

 "Confirm Exit", wx.OK|wx.CANCEL|wx.ICON_QUESTION)

 result = dlg.ShowModal()

 dlg.Destroy()

 if result == wx.ID_OK:

dlg.Destroy() & self.Destroy()

DESIGN OF A LOG-FILE MANAGMENT TOOL FOR EYE-TRACKING DATA

64

4.2.1.1.3 Importing OS Module

This module is provided in the Python Standard Library and it has been used mainly for

themenuv3.py package, as a way to provide the way to open a new window, so the user

can open the .tsv file, and read all the metrics that in future frames will be used.

Likewise, this module provides a portable way of using operating system dependent

functionality. So as a matter of a fact if I just want to read or write a file I used the

open() method, or even if I want to manipulate paths, the os.path module.

The method used in the development of this “Eye-Tracking Data Extractor”

Application has been the os.getcwd() one. Below I will explain how this method works,

and I will provide the user a brief resume with examples code, and an image so as to

figure out the simple but useful tool that the OS module provides. Furthermore, I will

explain one method from the WX Module, wx.FileDialog(), that even this module has

been described in the last subchapter, has considered appropriate to explain in this one,

as it relates to the method detailed below.

 Method used:

 os.getcwd()

Return a string representing the current working directory.

 Related method used from the wx module:

o Inheritance diagram for wx.FileDialog:

o Description of this method:

This method represents the file chooser dialog.

Pops up a file selector box. The path and filename are distinct elements of a full

file pathname. If path is “”, the current directory will be used. If filename is “”,

no default filename will be supplied. The wildcard determines what files are

displayed in the file selector, and file extension supplies a type extension for the

required filename.

o Windows styles:

DESIGN OF A LOG-FILE MANAGMENT TOOL FOR EYE-TRACKING DATA

65

Window Style Description

wx.FD_DEFAULT_STYLE Equivalent to wx.FD_OPEN.

wx.FD_OPEN This is an open dialog; usually this means that the default

button’s label of the dialog is “Open”. Cannot be combined

with wx.FD_SAVE.

wx.FD_SAVE This is a save dialog; usually this means that the default

button’s label of the dialog is “Save”. Cannot be

combinedwith wx.FD_OPEN.

wx.FD_OVERWRITE_PROMPT For save dialog only: prompt for a confirmation if a file

will be overwritten.

wx.FD_FILE_MUST_EXIST For open dialog only: the user may only select files that

actually exist.

wx.FD_MULTIPLE For open dialog only: allows selecting multiple files.

wx.FD_CHANGE_DIR Change the current working directory to the directory

where the file(s) chosen by the user are.

wx.FD_PREVIEW Show the preview of the selected files (currently only

supported by wxGTK using GTK+ 2.4 or later).
Table7 OS module styles windows

o Method from the Class API:

 __init__(parent,message=wx.FileSelectorPromptStr,defaultDir="",defaultFile=

"",wildcard=wx.FileSelectorDefaultWildcardStr,style=wx.FD_DEFAULT_STY

LE, pos=wx.DefaultPosition)

o Parameters:

 parent (wx.Window)

 message (string)

 defaultDir (string)

 defaultFile (string)

 wildcard (string)

 style (long)

 pos (wx.Point)

Here is the code and an image of how these two methods from different modules (OS,

WX) are running in the first frame of the Application:

DESIGN OF A LOG-FILE MANAGMENT TOOL FOR EYE-TRACKING DATA

66

defloadEvent(self, event):

"""Create a load dialogue box, load a file onto transferArea,

then destroy the load box."""

loadBox = wx.FileDialog(self, message="Open",

defaultDir=os.getcwd(),defaultFile="", style=wx.OPEN)

When the user clicks 'Browse', do this:

 if loadBox.ShowModal() == wx.ID_OK:

 global fileName

 fileName = loadBox.GetPath()

 fileName2=loadBox.GetFilename()

 #write the path to the textbox

 tc2.SetValue(fileName)

 loadBox.Destroy()

Figure 34wx.FileDialog method with os.getcwd

DESIGN OF A LOG-FILE MANAGMENT TOOL FOR EYE-TRACKING DATA

67

4.2.1.1.4 Importing STRING Module into Parser.py Package

During the realization of this project called “Eye-Tracking Data Extractor” Application

it has been very useful to have this module, importing a very useful tool, because it

allows working with text strings.

The string module contains a number of useful constants and classes, as well as some

deprecated legacy functions that are also available as methods on strings. In addition,

Python‟s built-in string classes support the sequence type methods that most of them has

been instanced in this App such as str(), unicode(), list(), tuple(), bytearray(), buffer(),

xrange(), and also some other string-specific methods.

Significantly, I will give a brief resume of the re module for string functions based on

regular expressions.

 string.split() method:

o Method from the Class API:

string.split(s[, sep[, maxsplit]])

o Brief resume of how it works:

Return a list of the words of the string s. If the optional second argument sep is absent

or None, the words are separated by arbitrary strings of whitespace characters (space,

tab, newline, return, form feed). If the second argument sep is present and not None, it

specifies a string to be used as the word separator. The returned list will then have one

more item than the number of non-overlapping occurrences of the separator in the

string. The optional third argument maxsplit defaults to 0. If it is nonzero, at most

maxsplit number of splits occur, and the remainder of the string is returned as the final

element of the list (thus, the list will have at most maxsplit+1 elements).

The behavior of split on an empty string depends on the value of sep. If sep is not

specified, or specified as None, the result will be an empty list. If sep is specified as any

string, the result will be a list containing one element which is an empty string.

This method gathered in the STRING module has provided with an enormous use, as it

has been instanced in the Parser.py package. The main purpose has been to offer a way

to collect all the data and try to parse it later. In this way, it has been gathered all the

metrics of a .tsv format file (chosen by the user in the first window), and matched

depending on whether the chosen metrics are available and put them graphically on the

list.

Code gathered from the Parser.py package where the data is split from the .tsv format

file chosen by the user:

DESIGN OF A LOG-FILE MANAGMENT TOOL FOR EYE-TRACKING DATA

68

importcsv, operator, wx, string

portfolio = open(str(fileName2), "rb")

 for data in portfolio:

 data1= data.strip()

 names=data1.split('\t')

 if "Timestamp" in names:

 names0.append("Timestamp")

 if "DateTimeStamp" in names:

 names0.append("DateTimeStamp")

 if "DateTimeStampStartOffset" in

names:

names0.append("DateTimeStampStartOffset")

 Re.match() method:

o Method from the Class API:

re.match(string[, pos[, endpos]])

o Brief resume of how it works:

This method has been mainly used in the development of the ThirdWindow.py package.

The main purpose of the using of it lies on the hand of be able to make time search, and

whether they match the times listed in the metric called “DateTimeStampStartOffset”.

If zero or more characters at the beginning of string match this regular expression,

return a corresponding MatchObject() instance. Return None if the string does not

match the pattern; note that this is different from a zero-length match.

The optional pos and endpos parameters have the same meaning as for the search()

method.

Here below is the code implemented in the last Window, and as we can see, the time

introduced by the user, it has matched with and accuracy of decimals of second, as it has

been the best way to approach the exact time gathered in the .tsv file format chosen by

the user in the Menuv3.py package.

DESIGN OF A LOG-FILE MANAGMENT TOOL FOR EYE-TRACKING DATA

69

import string, re, wx, global

if re.match(value1[:10],names1[z][:10]):

for names1[j] in portfolio:

DateTimeStampStartOffset2=str(names1[j]).strip()

names2=DateTimeStampStartOffset2.split('\t')

 portfolio2.write('\t'+names1[j]+'\n')

DESIGN OF A LOG-FILE MANAGMENT TOOL FOR EYE-TRACKING DATA

70

4.2.2 WORKING IN A EVENT-DRIVEN ENVIRONMENT

4.2.2.1 Programming in an event-driven environment

Event handling is the fundamental mechanism that makes wxPython programs work. A

program that works primarily via event handling is called event driven. In this chapter,

we will discuss what an event-driven application is, and how it differs from a traditional

application. We’ll provide an overview of the concepts and terminology involved in

GUI programming for the development of the “Eye-Tracker Data Extractor”

Application, covering the interaction between the user, the toolkit, and the program

logic. We’ll also cover the lifecycle of a typical event-driven program.

An event is something that happens in the system which the application can respond to

by triggering functionality. The event can be a low-level user action, such as a mouse

move or key press, or a higher level user action given a specific meaning by wxPython

because it takes place inside a wxPython widget, such as a button click or a menu

selection. The event can also be created by the under lying operating system, such as a

request to shut down. It has been even created own objects to generate own events. A

wxPython application works by associating a specific kind of event with a specific piece

of code, which should be executed in response (it will be shown below examples of the

implemented code in the Project). The process by which events are mapped to code is

called event handling.

4.2.2.2 What is event-driven programming

An event-driven program is mainly a control structure that receives events and responds

to them. The structure of the wxPython program developed in this Thesis (or of any

event-driven program) is fundamentally different from that of an ordinary Python script.

Atypical Python script has a specific starting point and a specific ending point, and the

programmer controls the order of execution using conditionals, loops, and functions.

The program is not linear, but its order is often independent of user action.

From the user’s perspective, a wxPython program spends much of its time doing

nothing. Typically, it is idle until the user or the system does something to trigger the

wxPython program into action. The wxPython program structure is an example of an

event-driven program architecture.

Think of the main loop of an event-driven system as analogous to an operator at a

customer service call center. When no calls are coming in, the operator is, as it is said,

standing by. Eventually, an event occurs, such as the phone ringing. The operator

initiates a response process, which involves talking to the customer until the operator

has enough information to dispatch the customer to the proper respondent for her call.

The operator then waits for the next event.

Below is shown a simple diagram outlining the major parts of an event-driven program:

DESIGN OF A LOG-FILE MANAGMENT TOOL FOR EYE-TRACKING DATA

71

Figure 35 A schematic of the event handling cycle, showing the life of the main program, a user event, and

dispatch to handler fuctions

Although each event-driven system is somewhat different, there are many similarities

between them. The primary characteristics of an event-driven program structure are as

follows [3]:

 After the initial setup, the program spends most of its time in an idle loop, where

it does little or no information processing. Entering into this loop signifies the

beginning of the user-interactive part of the program, an exiting the loop

signifies its end. In wxPython, this loop is the method wx.App.MainLoop(), and

is explicitly invoked in our script. The main loop is automatically exited when

all top-level windows are closed.

 The program contains events that correspond to things that happen in the

program environment. Events are typically triggered by user activity, but can

also be the result of system activity, or arbitrary code elsewhere in the program.

In wxPython, all events are instances of the class wx.Event or one of its

subclasses. Each event has an event type attribute that allows different kinds of

events to be distinguished. For example, a mouse up and mouse down event are

both delivered as instances of the same class, but have a different event type.

 As part of the idle loop, the program periodically checks to see whether anything

requiring a response has happened. There are two mechanisms by which an

event-driven system may be notified about events. The more popular method,

used by wxPython, posts the events to a central queue, which triggers processing

of that event. Other event-driven systems use a polling method, where possible

raisers of events are periodically queried by the central process and asked if they

have any events pending.

DESIGN OF A LOG-FILE MANAGMENT TOOL FOR EYE-TRACKING DATA

72

 When an event takes place, the event-based system processes the event in an

attempt to determine what code, if any, should be executed. In wxPython, native

system events are translated to wx.Event instances and then given to the method

wx.EvtHandler.ProcessEvent() for dispatching out to the proper handler code.

Figure 35 presents a basic overview of the process.

 The component parts of the event mechanism are event binder objects and event

handlers. An event binder is a predefined wxPython object. There is a separate

event binder for each event type. An event handler is a function or method that

takes a wxPython event instance as an argument. An event handler is invoked

when the user triggers the appropriate event.

Figure 36 Even handling process, starting with the event triggered, and moving through the steps of searching

for a handler

4.2.2.3 Binding Events in the Application

It is significant line item for all methods used in the development of binding events.

This is the super class wx.EvtHandler, which handles all types of events produced by

any interruption. Let us call interruption, as previously described in this Thesis, to any

caused by the click of a mouse, by pressing a button, by marking a check box, etc.

Detailed below, the super class wx.EvtHandler method is described and methods used

for each of these interruptions as well as of code that describes each one.

DESIGN OF A LOG-FILE MANAGMENT TOOL FOR EYE-TRACKING DATA

73

 Wx.EvtHandler

Inheritance diagram for wx.EvtHandler:

o Description:

 A class that can handle events from the windowing system. wx.Window

and therefore all window classes are derived from this class.

 When events are received, wx.EvtHandler invokes the method listed in

the event table using itself as the object.

 When using multiple inheritance it is imperative that the wx.EvtHandler

(-derived) class be the first class inherited such that the “self” pointer for

the overall object will be identical to the “self” pointer for the

wx.EvtHandler portion.

o Methods from the Class API:

Bind(event, handler, source=None, id=-1, id2=-1)

 Bind an event to an event handler.

- Parameters:

 Event (wx.Event): One of the wx.EVT_* objects that specifies the

type of event to bind,

 Handler (PyObject): A callable object to be invoked when the

event is delivered to self. Pass None to disconnect an event

handler.

 Source (wx.Window): Sometimes the event originates from a

different window than self, but you still want to catch it in self.

(For example, a button event delivered to a frame). By passing the

source of the event, the event handling system is able to

differentiate between the same events types from different

controls.

 id(int): Used to specify the event source by ID instead of

instance.

 id2(int): Used when it is desirable to bind a handler to a range of

IDs, such as with wx.EVT_MENU_RANGE.

DESIGN OF A LOG-FILE MANAGMENT TOOL FOR EYE-TRACKING DATA

74

Below is detailed part of the code that has been implemented in the development of the

“Eye-Tracker Data Extractor” Application, where there are detailed some of the

methods connected with the Widgets used in the wx module of Python.

Bind button clicks, introducing time in text control ...

self.Bind (wx.EVT_BUTTON, self.onSave, save_button)

self.Bind (wx.EVT_CHECKBOX, self.onClick, view_button)

self.Bind(wx.EVT_BUTTON, self.onHelpButton, Help_button)

self.Bind (wx.EVT_BUTTON, self.exitEvent, Exit_button)

self.Bind (wx.EVT_TEXT,self.On_DataTime,time1)

self.Bind (wx.EVT_TEXT,self.On_DataTime,time2)

self.Bind (wx.EVT_BUTTON, self.onOK_Button, OK_button)

Below should be all the methods connected with the bindings..

 defonSave()

 defOnClick()

 defonHelpButton()

 defexitEvent()

 defOn_DataTime()

 defonOK_Button()

DESIGN OF A LOG-FILE MANAGMENT TOOL FOR EYE-TRACKING DATA

75

CHAPTER 5

EVALUATION

5.1 INTRODUCTION

The main reason to make an evaluation of the program lies in the novelty of it. It must

be said that this was the first time it is used a tool like the "Eye-Tracking Data

Extractor" implemented with the Python language to allow the user to collect metrics

and information on a .tsv format file recording, as a result of the Tobii Eye Tracker

Monitor.

Significantly, it has sought an assessment method to help us refine the possible future

improvements in the App program. We have used the Think Aloud method, in a scene of

two ordinary users, and secondly in a scenario with two expert users.

Here below is explained how this method works, in order to give a brief resume and

figure out the main purpose of using it:

Think Aloud (TA)[6]studies provide rich verbal data about reasoning during a problem

solving task. Using TA and protocol analysis, we can identify the information that is

concentrated on during problem solving and how that information is used to facilitate

problem resolution. From this, inferences can be made about the reasoning processes

that were used during the problem-solving task. In the past, the validity of data obtained

from TA studies has been suspect because of inconsistencies in data collection and the

inability to verify findings obtained from the slow, laborious process of protocol

analysis. But nowadays, with this evaluation made in this Project, it describes a means

of obtaining more accurate verbal data and analyzing it in a standardized step-by-step

manner.

DESIGN OF A LOG-FILE MANAGMENT TOOL FOR EYE-TRACKING DATA

76

5.2 SELECTING SUBJECTS IN TA

5.2.1 CRITERIA FOR SELECTING SUBJECTS

Both, subjects and tasks must thus be selected that the effect of possible disruptive

effects of thinking aloud is minimized. The cognitive process in which we are interested

should occur when the task is presented to the subject, disruption of the process by

thinking aloud should be minimized and so should synchronization problems and

working memory overload. Both in scientific research and in knowledge acquisition one

does not always have a choice. Research may be directed at a particular kind of persons

and we need a random sample of those because the results must be generalized over all

persons of this kind. In knowledge acquisition it is often difficult to get access to an

expert and one often cannot choose. Two important properties of subjects with regard to

the applicability of the think aloud method are the degree of experts and verbalization

skills.

In this way, for the realization of this evaluation, we have chosen two different groups

of subjects. The first is in relation to a common subject or user, and the second a subject

or expert user.

5.2.2 EXPERTS AS SUBJECTS

If the think aloud method is used for the elicitation of expert knowledge several

problems are likely to occur. Expert knowledge is often partially „compiled‟ in the sense

that experts are able to perform a task very well, but that they cannot explain how they

found the right answer („I just saw that it had to be this‟).

The think aloud method makes some of this knowledge visible. On several occasions

we observed that experts were able to make their knowledge explicit in a discussion

afterwards about their think aloud protocols and our analysis of the protocols. However,

as with regular subjects, experts that perform a task as a routine and very fast are unable

to verbalize their thoughts during this performance. This is the reason why the experts

have evaluated the user interface and provided comments, while the users worked in the

scenario and used this protocol, called Think Aloud (TA) [6].

DESIGN OF A LOG-FILE MANAGMENT TOOL FOR EYE-TRACKING DATA

77

5.3 EVALUATION

As it has been explained in the previous subchapter, the main idea lies in providing both

groups of users a scenario, in which the “Eye-Tracking Data Extractor” Application

was evaluated.

o There have been four participants in total:

 Two typical or normal users.

 They have been working on a scenario and used the Think Aloud Protocol

evaluation method. Comments and conclusions were drawn regarding their

activity.

.

 Two experts evaluator subjects

 They have evaluated the User Interface (UI)and provided comments.

o Scenario created for two normal users:

By using the Eye-Tracking Data Extractor complete the following:

1. Export to a text file the metrics named

 AOIDS

 MappedFixationPointX

 MappedFixationPointY

from the logfile named “eyetracker-logfile.tsv”

2. Gather all the metrics chosen for this time period

 FROM: 00:00:01,123

 TO: 00:00:05,246

3. View your results.

DESIGN OF A LOG-FILE MANAGMENT TOOL FOR EYE-TRACKING DATA

78

5.4 RESULTS

Here below are resume the results of both two groups. The normal users group tried to

explain as the way of the Think Aloud evaluation protocol, their reactions during the

process of going through the scenario provided. On the other hand, the experts group,

commented writing down their impressions about how the Application works, and even

what should be done in future developments.

 Normal users group:

I. FIRST USER.

 Reactions collected:

 It was a little difficult to understand at the end that it was necessary to

insert a filename so the program could save the data.

 Also believes that the file should write the metrics in different columns.

 Overall it was an easy to use this application

II. SECOND USER.

 Reactions collected:

 Too slow after pressing “next” button in the first frame. No indication of

loading the file

 In the parameters list in the second frame, Timestamp and

DateTimeStamp were not clearly displayed. Also the word “parameter”

was misspelled

 The produced file is not very easy to read and understand. Metrics

should not be written one after the other, no spaces between results and

the title of the next metric.

 Experts users group:

III. FIRST USER.

 Reactions collected:

o Firstframe:

 The progress bar is missing. So there is no system‟s feedback while a file

is opened

o Secondframe:

 “sort by name” should be placed over the first text box since it refers

only to this.

 A “back” button redirecting to the first frame should be provided

DESIGN OF A LOG-FILE MANAGMENT TOOL FOR EYE-TRACKING DATA

79

o Thirdframe:

 A “back” button redirecting to the third frame should be provided

 Feedback should be provided through a progress bar or hourglass while

the text file is produced

 Interface is not well organized in terms of space

IV. SECOND USER.

 Reactions collected:

 Next button should be deactivated if no file has been chosen.

 Feedback while waiting for .tsv file to load

 Mouse over explanation for every metric would be useful

 "Sort by name" should be placed above the metric list

 Help should be relative to the individual tasks. If delete is pressed and no

item was selected should not read "you must select a parameter from the

list on the left"

 Multiple item selection should work also for adding multiple items to the

right list

 Exit button should not be so prominent. The possibility to press it by

accident is bigger.

 Information about total running time of the selected file should be given

to users.

 The timestamp format should be displayed by default (e.g 00:00:00,000)

in the textbox. User then can only change values.

DESIGN OF A LOG-FILE MANAGMENT TOOL FOR EYE-TRACKING DATA

80

5.5 CONCLUSIONS

By using the method of evaluation, it was possible to know which are the impressions

and reactions of different users studied. Note the importance of using a fully recognized

and valid method such as the Think Aloud protocol for evaluation, thus giving greater

accuracy and depth to the study.

In this way have been collected in written form evaluations on the use of this

application by even a normal user as also an expert one. Thanks to these users for future

improvements of the program (remember that for the realization of this project has not

been able to count on any previous version or a tool like this), it will be possible to

make changes and improvements in many facets of design and functionality so that the

user will find this application more complete.

It should be noted that some of these improvements have been solved, in order that did

not require so much time to implement them (e.g changes in the spelling of a button, or

fixing the disposition of a button). Still, it remains open availability of the Project for

future use and improvement.

DESIGN OF A LOG-FILE MANAGMENT TOOL FOR EYE-TRACKING DATA

81

CHAPTER 6

CONCLUSIONS

The motivation of this thesis and the application implemented resulted from the need to

develop a tool to facilitate the reading of data collected after making a recording with

the Eye Tracker monitor.

It is a tedious, lengthy and cumbersome labor that the user has for their own resources

to get information to highlight the metrics that are important to use. The main reason

lays on the tsv format files resulted of the record. This is the main reason why this

Project has been developed.

Never before had disposed of this tool. In this way has attempted to the first version of

an application that would provide the user a clear and effective way to solve the

problem resided in summarized in the way as possible all data collected and displayed

in a new tsv format file.

By using the Python language, more specifically the graphic tool provided by the

wxmodule, has been able to learn a new programming language. Likewise, it has been a

great help as a language to be so intuitive, but the simplicity sometimes has resulted in

complex algorithms, or search for methods to facilitate the work.

Therefore it has had a modern graphical tool, according to a modern programming

language that is rising nowadays. It also highlights the intention of offering a simple and

nice graphic interface for the user, through packages or modules imported by Python

widgets.

As further improvements can be handled with the evaluation method described in the

previous chapter, as well as new windows to improve the efficiency in obtaining the

metrics, to offer the user the data collected, etc. It is thought to include the recorded

video of the Eye-Tracker monitor in the application itself and thus give the user a

graphical way to choose the times between which he wants to gather the data.

DESIGN OF A LOG-FILE MANAGMENT TOOL FOR EYE-TRACKING DATA

82

Referencies

[1] “Tobii Product Description TX Series Eye Trackers.” Revision 2.1, June 2010,

http://www.tobii.com/en/eye-tracking-integration/global/products-services/hardware/eye-tracking-

academy/(tobii)

[2] Pablo Garaizar Sagarmiaga. University of Deusto (Vasque Country. SPAIN). “Review in designing

of User Interfaces” 2006-28-08, Web site: http://blog.txipinet.com/2006/08/28/28-estudio-sobre-el-

diseno-de-guis-iii-la-importancia-del-diseno/(deusto)

[3] Noel Rappin and Robin Dunn “Wxpython in Action” Manning Publication Co. – Greenwich-

(2006), ISBN 1-932394-62-1

[4] René-Lévesque Ouest, 2008-12-12 Montréal, Québec, Canada, Les Innovations VLAM inc.

“Benchmark study between Boost and SWIG wrappers for Python”,

http://foobrac.blogspot.com/2008/12/boostpython-vs-swigpython-benchmark.html

[5] Robin Dunn and Harri Pasanen, Developers of the wxpython programming language

Web site: http://www.wxpython.org/

[6] Maarten W. van Someren, Yvonne F.Barnard, Jacobijn A.C. Sandberg, “The Think Aloud Method”

“A practical guide to modeling cognitive processes”, Department of Social Science Informatics,

University of Amsterdam, Published by Academic Press, London, 1994, ISBN 0-12-714270-3, Copyright

M.W. van Someren, Y.F. Barnard and J.A.C. Barnard, Web site: http://www.staff.science.uva.nl/

http://www.tobii.com/en/eye-tracking-integration/global/products-services/hardware/eye-tracking-academy/(tobii)
http://www.tobii.com/en/eye-tracking-integration/global/products-services/hardware/eye-tracking-academy/(tobii)
http://blog.txipinet.com/2006/08/28/28-estudio-sobre-el-diseno-de-guis-iii-la-importancia-del-diseno/(deusto)
http://blog.txipinet.com/2006/08/28/28-estudio-sobre-el-diseno-de-guis-iii-la-importancia-del-diseno/(deusto)
http://foobrac.blogspot.com/2008/12/boostpython-vs-swigpython-benchmark.html
http://www.wxpython.org/

DESIGN OF A LOG-FILE MANAGMENT TOOL FOR EYE-TRACKING DATA

83

GLOSSARY

HCI: Human Computer Interaction

TSV: Tab Separate Values

GUI: Graphical User Interface

APP: Application

API: Application Programming Interface

UI: User Interface

CPU: Computer Processing Unit

IDLE: Integrate Development Environment for Python

IDE: Integrate Development Environment

GNU: GNU’s Not UNIX

SWIG: Simplified Wrapper and Interface Generator

TA: Think Aloud protocol method of evaluation

OS: Operative System

ID: Identifier

VGAP: Vertical Gap

HGAP: Horizontal Gap

AWT: Abstract Window Toolkit

GTK: Gimp Tool Kit

QT: QT widgets Tool Kit

TFT: Thin Film Transistor

HTML: Hyper Text Markup Language

PC: Personal Computer

RAM: Random Access Memory

SDK: Software Developers Kit

URL: Universal Resource Locator

USB: Universal Serial Bus

VM: Virtual Machine

WST: Web Standard Tools

DESIGN OF A LOG-FILE MANAGMENT TOOL FOR EYE-TRACKING DATA

84

