A survey on web usage mining techniques for web-based adaptive hypermedia systems
[v13] M. Koutri, N. Avouris, S. Daskalaki, Chapter 7: A survey on web usage mining techniques for web-based adaptive hypermedia systems , in S. Y. Chen and G. D. Magoulas (ed), Adaptable and Adaptive Hypermedia Systems, IRM Press, pp. 125-149, Hershey, 2005. (pdf)


This chapter discusses web usage mining techniques that can be applied for building adaptive hypermedia systems. These techniques are used for uncovering hidden patterns within web access data and then for building the user model that lies in the heart of each adaptive system. Web access data, traditionally stored in the server log files, constitute a rich source of data collected in a non-intrusive way that guards the privacy of users. Several web usage mining approaches have been proposed for exposing usage patterns with the most prominent ones being cluster mining, association rule mining, and sequential pattern mining. This chapter provides an overview of the state of the art in research of web usage mining, while discusses the most relevant criteria for deciding on the suitability of these techniques for building an adaptive web site. Moreover, the different types of patterns revealed from web usage mining are correlated with different adaptation aspects.


Computer-supported collaborative learning has been an active area of research since the beginning for the HCI group more>>

Web usability team of the HCI Group has been active in studying human-web interaction and ways to support the design of accessible, findable, usable and aesthetically appealing web sites. more>>

Mobile Technology Unit of the HCI Group has been studying design and evaluation of mobile applicationss more>>

Hci Group | Electrical and Computer Engineering | University of Patras